File size: 9,932 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# 3D Body Mesh Recovery Datasets

It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.

To achieve high-quality human mesh estimation, we use multiple datasets for training.
The following items should be prepared for human mesh training:

<!-- TOC -->

- [3D Body Mesh Recovery Datasets](#3d-body-mesh-recovery-datasets)
  - [Notes](#notes)
    - [Annotation Files for Human Mesh Estimation](#annotation-files-for-human-mesh-estimation)
    - [SMPL Model](#smpl-model)
  - [COCO](#coco)
  - [Human3.6M](#human36m)
  - [MPI-INF-3DHP](#mpi-inf-3dhp)
  - [LSP](#lsp)
  - [LSPET](#lspet)
  - [CMU MoShed Data](#cmu-moshed-data)

<!-- TOC -->

## Notes

### Annotation Files for Human Mesh Estimation

For human mesh estimation, we use multiple datasets for training.
The annotation of different datasets are preprocessed to the same format. Please
follow the [preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to generate the annotation files or download the processed files from
[here](https://download.openmmlab.com/mmpose/datasets/mesh_annotation_files.zip),
and make it look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── mesh_annotation_files
        β”œβ”€β”€ coco_2014_train.npz
        β”œβ”€β”€ h36m_valid_protocol1.npz
        β”œβ”€β”€ h36m_valid_protocol2.npz
        β”œβ”€β”€ hr-lspet_train.npz
        β”œβ”€β”€ lsp_dataset_original_train.npz
        β”œβ”€β”€ mpi_inf_3dhp_train.npz
        └── mpii_train.npz
```

### SMPL Model

```bibtex
@article{loper2015smpl,
  title={SMPL: A skinned multi-person linear model},
  author={Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J},
  journal={ACM transactions on graphics (TOG)},
  volume={34},
  number={6},
  pages={1--16},
  year={2015},
  publisher={ACM New York, NY, USA}
}
```

For human mesh estimation, SMPL model is used to generate the human mesh.
Please download the [gender neutral SMPL model](http://smplify.is.tue.mpg.de/),
[joints regressor](https://download.openmmlab.com/mmpose/datasets/joints_regressor_cmr.npy)
and [mean parameters](https://download.openmmlab.com/mmpose/datasets/smpl_mean_params.npz)
under `$MMPOSE/models/smpl`, and make it look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ ...
β”œβ”€β”€ models
    │── smpl
        β”œβ”€β”€ joints_regressor_cmr.npy
        β”œβ”€β”€ smpl_mean_params.npz
        └── SMPL_NEUTRAL.pkl
```

## COCO

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48">COCO (ECCV'2014)</a></summary>

```bibtex
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}
```

</details>

For [COCO](http://cocodataset.org/) data, please download from [COCO download](http://cocodataset.org/#download). COCO'2014 Train is needed for human mesh estimation training.
Download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── coco
        β”‚-- train2014
        β”‚   β”œβ”€β”€ COCO_train2014_000000000009.jpg
        β”‚   β”œβ”€β”€ COCO_train2014_000000000025.jpg
        β”‚   β”œβ”€β”€ COCO_train2014_000000000030.jpg
        |   β”‚-- ...

```

## Human3.6M

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://ieeexplore.ieee.org/abstract/document/6682899/">Human3.6M (TPAMI'2014)</a></summary>

```bibtex
@article{h36m_pami,
  author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu,  Cristian},
  title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
  publisher = {IEEE Computer Society},
  volume = {36},
  number = {7},
  pages = {1325-1339},
  month = {jul},
  year = {2014}
}
```

</details>

For [Human3.6M](http://vision.imar.ro/human3.6m/description.php), we use the MoShed data provided in [HMR](https://github.com/akanazawa/hmr) for training.
However, due to license limitations, we are not allowed to redistribute the MoShed data.

For the evaluation on Human3.6M dataset, please follow the
[preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to extract test images from
[Human3.6M](http://vision.imar.ro/human3.6m/description.php) original videos,
and make it look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── Human3.6M
        β”œβ”€β”€ images
         Β Β  β”œβ”€β”€ S11_Directions_1.54138969_000001.jpg
         Β Β  β”œβ”€β”€ S11_Directions_1.54138969_000006.jpg
         Β Β  β”œβ”€β”€ S11_Directions_1.54138969_000011.jpg
         Β Β  β”œβ”€β”€ ...
```

The download of Human3.6M dataset is quite difficult, you can also download the
[zip file](https://drive.google.com/file/d/1WnRJD9FS3NUf7MllwgLRJJC-JgYFr8oi/view?usp=sharing)
of the test images. However, due to the license limitations, we are not allowed to
redistribute the images either. So the users need to download the original video and
extract the images by themselves.

## MPI-INF-3DHP

<!-- [DATASET] -->

```bibtex
@inproceedings{mono-3dhp2017,
 author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
 title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
 booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
 url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
 year = {2017},
 organization={IEEE},
 doi={10.1109/3dv.2017.00064},
}
```

For [MPI-INF-3DHP](http://gvv.mpi-inf.mpg.de/3dhp-dataset/), please follow the
[preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to sample images, and make them like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    β”œβ”€β”€ mpi_inf_3dhp_test_set
    β”‚Β Β  β”œβ”€β”€ TS1
    β”‚Β Β  β”œβ”€β”€ TS2
    β”‚Β Β  β”œβ”€β”€ TS3
    β”‚Β Β  β”œβ”€β”€ TS4
    β”‚Β Β  β”œβ”€β”€ TS5
    β”‚Β Β  └── TS6
    β”œβ”€β”€ S1
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S2
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S3
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S4
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S5
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S6
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    β”œβ”€β”€ S7
    β”‚Β Β  β”œβ”€β”€ Seq1
    β”‚Β Β  └── Seq2
    └── S8
        β”œβ”€β”€ Seq1
        └── Seq2
```

## LSP

<!-- [DATASET] -->

```bibtex
@inproceedings{johnson2010clustered,
  title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
  author={Johnson, Sam and Everingham, Mark},
  booktitle={bmvc},
  volume={2},
  number={4},
  pages={5},
  year={2010},
  organization={Citeseer}
}
```

For [LSP](https://sam.johnson.io/research/lsp.html), please download the high resolution version
[LSP dataset original](http://sam.johnson.io/research/lsp_dataset_original.zip).
Extract them under `$MMPOSE/data`, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── lsp_dataset_original
        β”œβ”€β”€ images
         Β Β  β”œβ”€β”€ im0001.jpg
         Β Β  β”œβ”€β”€ im0002.jpg
         Β Β  └── ...
```

## LSPET

<!-- [DATASET] -->

```bibtex
@inproceedings{johnson2011learning,
  title={Learning effective human pose estimation from inaccurate annotation},
  author={Johnson, Sam and Everingham, Mark},
  booktitle={CVPR 2011},
  pages={1465--1472},
  year={2011},
  organization={IEEE}
}
```

For [LSPET](https://sam.johnson.io/research/lspet.html), please download its high resolution form
[HR-LSPET](http://datasets.d2.mpi-inf.mpg.de/hr-lspet/hr-lspet.zip).
Extract them under `$MMPOSE/data`, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── lspet_dataset
        β”œβ”€β”€ images
        β”‚Β Β  β”œβ”€β”€ im00001.jpg
        β”‚Β Β  β”œβ”€β”€ im00002.jpg
        β”‚Β Β  β”œβ”€β”€ im00003.jpg
        β”‚Β Β  └── ...
        └── joints.mat
```

## CMU MoShed Data

<!-- [DATASET] -->

```bibtex
@inproceedings{kanazawa2018end,
  title={End-to-end recovery of human shape and pose},
  author={Kanazawa, Angjoo and Black, Michael J and Jacobs, David W and Malik, Jitendra},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={7122--7131},
  year={2018}
}
```

Real-world SMPL parameters are used for the adversarial training in human mesh estimation.
The MoShed data provided in [HMR](https://github.com/akanazawa/hmr) is included in this
[zip file](https://download.openmmlab.com/mmpose/datasets/mesh_annotation_files.zip).
Please download and extract it under `$MMPOSE/data`, and make it look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── mesh_annotation_files
        β”œβ”€β”€ CMU_mosh.npz
        └── ...
```