Spaces:
Build error
Build error
File size: 9,932 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# 3D Body Mesh Recovery Datasets
It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
To achieve high-quality human mesh estimation, we use multiple datasets for training.
The following items should be prepared for human mesh training:
<!-- TOC -->
- [3D Body Mesh Recovery Datasets](#3d-body-mesh-recovery-datasets)
- [Notes](#notes)
- [Annotation Files for Human Mesh Estimation](#annotation-files-for-human-mesh-estimation)
- [SMPL Model](#smpl-model)
- [COCO](#coco)
- [Human3.6M](#human36m)
- [MPI-INF-3DHP](#mpi-inf-3dhp)
- [LSP](#lsp)
- [LSPET](#lspet)
- [CMU MoShed Data](#cmu-moshed-data)
<!-- TOC -->
## Notes
### Annotation Files for Human Mesh Estimation
For human mesh estimation, we use multiple datasets for training.
The annotation of different datasets are preprocessed to the same format. Please
follow the [preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to generate the annotation files or download the processed files from
[here](https://download.openmmlab.com/mmpose/datasets/mesh_annotation_files.zip),
and make it look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mesh_annotation_files
βββ coco_2014_train.npz
βββ h36m_valid_protocol1.npz
βββ h36m_valid_protocol2.npz
βββ hr-lspet_train.npz
βββ lsp_dataset_original_train.npz
βββ mpi_inf_3dhp_train.npz
βββ mpii_train.npz
```
### SMPL Model
```bibtex
@article{loper2015smpl,
title={SMPL: A skinned multi-person linear model},
author={Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J},
journal={ACM transactions on graphics (TOG)},
volume={34},
number={6},
pages={1--16},
year={2015},
publisher={ACM New York, NY, USA}
}
```
For human mesh estimation, SMPL model is used to generate the human mesh.
Please download the [gender neutral SMPL model](http://smplify.is.tue.mpg.de/),
[joints regressor](https://download.openmmlab.com/mmpose/datasets/joints_regressor_cmr.npy)
and [mean parameters](https://download.openmmlab.com/mmpose/datasets/smpl_mean_params.npz)
under `$MMPOSE/models/smpl`, and make it look like this:
```text
mmpose
βββ mmpose
βββ ...
βββ models
βββ smpl
βββ joints_regressor_cmr.npy
βββ smpl_mean_params.npz
βββ SMPL_NEUTRAL.pkl
```
## COCO
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48">COCO (ECCV'2014)</a></summary>
```bibtex
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
</details>
For [COCO](http://cocodataset.org/) data, please download from [COCO download](http://cocodataset.org/#download). COCO'2014 Train is needed for human mesh estimation training.
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ coco
β-- train2014
β βββ COCO_train2014_000000000009.jpg
β βββ COCO_train2014_000000000025.jpg
β βββ COCO_train2014_000000000030.jpg
| β-- ...
```
## Human3.6M
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://ieeexplore.ieee.org/abstract/document/6682899/">Human3.6M (TPAMI'2014)</a></summary>
```bibtex
@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
```
</details>
For [Human3.6M](http://vision.imar.ro/human3.6m/description.php), we use the MoShed data provided in [HMR](https://github.com/akanazawa/hmr) for training.
However, due to license limitations, we are not allowed to redistribute the MoShed data.
For the evaluation on Human3.6M dataset, please follow the
[preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to extract test images from
[Human3.6M](http://vision.imar.ro/human3.6m/description.php) original videos,
and make it look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ Human3.6M
βββ images
Β Β βββ S11_Directions_1.54138969_000001.jpg
Β Β βββ S11_Directions_1.54138969_000006.jpg
Β Β βββ S11_Directions_1.54138969_000011.jpg
Β Β βββ ...
```
The download of Human3.6M dataset is quite difficult, you can also download the
[zip file](https://drive.google.com/file/d/1WnRJD9FS3NUf7MllwgLRJJC-JgYFr8oi/view?usp=sharing)
of the test images. However, due to the license limitations, we are not allowed to
redistribute the images either. So the users need to download the original video and
extract the images by themselves.
## MPI-INF-3DHP
<!-- [DATASET] -->
```bibtex
@inproceedings{mono-3dhp2017,
author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
year = {2017},
organization={IEEE},
doi={10.1109/3dv.2017.00064},
}
```
For [MPI-INF-3DHP](http://gvv.mpi-inf.mpg.de/3dhp-dataset/), please follow the
[preprocess procedure](https://github.com/nkolot/SPIN/tree/master/datasets/preprocess)
of SPIN to sample images, and make them like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mpi_inf_3dhp_test_set
βΒ Β βββ TS1
βΒ Β βββ TS2
βΒ Β βββ TS3
βΒ Β βββ TS4
βΒ Β βββ TS5
βΒ Β βββ TS6
βββ S1
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S2
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S3
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S4
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S5
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S6
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S7
βΒ Β βββ Seq1
βΒ Β βββ Seq2
βββ S8
βββ Seq1
βββ Seq2
```
## LSP
<!-- [DATASET] -->
```bibtex
@inproceedings{johnson2010clustered,
title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
author={Johnson, Sam and Everingham, Mark},
booktitle={bmvc},
volume={2},
number={4},
pages={5},
year={2010},
organization={Citeseer}
}
```
For [LSP](https://sam.johnson.io/research/lsp.html), please download the high resolution version
[LSP dataset original](http://sam.johnson.io/research/lsp_dataset_original.zip).
Extract them under `$MMPOSE/data`, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ lsp_dataset_original
βββ images
Β Β βββ im0001.jpg
Β Β βββ im0002.jpg
Β Β βββ ...
```
## LSPET
<!-- [DATASET] -->
```bibtex
@inproceedings{johnson2011learning,
title={Learning effective human pose estimation from inaccurate annotation},
author={Johnson, Sam and Everingham, Mark},
booktitle={CVPR 2011},
pages={1465--1472},
year={2011},
organization={IEEE}
}
```
For [LSPET](https://sam.johnson.io/research/lspet.html), please download its high resolution form
[HR-LSPET](http://datasets.d2.mpi-inf.mpg.de/hr-lspet/hr-lspet.zip).
Extract them under `$MMPOSE/data`, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ lspet_dataset
βββ images
βΒ Β βββ im00001.jpg
βΒ Β βββ im00002.jpg
βΒ Β βββ im00003.jpg
βΒ Β βββ ...
βββ joints.mat
```
## CMU MoShed Data
<!-- [DATASET] -->
```bibtex
@inproceedings{kanazawa2018end,
title={End-to-end recovery of human shape and pose},
author={Kanazawa, Angjoo and Black, Michael J and Jacobs, David W and Malik, Jitendra},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={7122--7131},
year={2018}
}
```
Real-world SMPL parameters are used for the adversarial training in human mesh estimation.
The MoShed data provided in [HMR](https://github.com/akanazawa/hmr) is included in this
[zip file](https://download.openmmlab.com/mmpose/datasets/mesh_annotation_files.zip).
Please download and extract it under `$MMPOSE/data`, and make it look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mesh_annotation_files
βββ CMU_mosh.npz
βββ ...
```
|