Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 4,358 Bytes
			
			d7a991a  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141  | 
								# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
from argparse import ArgumentParser
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
                         vis_pose_result)
from mmpose.datasets import DatasetInfo
try:
    import face_recognition
    has_face_det = True
except (ImportError, ModuleNotFoundError):
    has_face_det = False
def process_face_det_results(face_det_results):
    """Process det results, and return a list of bboxes.
    :param face_det_results: (top, right, bottom and left)
    :return: a list of detected bounding boxes (x,y,x,y)-format
    """
    person_results = []
    for bbox in face_det_results:
        person = {}
        # left, top, right, bottom
        person['bbox'] = [bbox[3], bbox[0], bbox[1], bbox[2]]
        person_results.append(person)
    return person_results
def main():
    """Visualize the demo images.
    Using mmdet to detect the human.
    """
    parser = ArgumentParser()
    parser.add_argument('pose_config', help='Config file for pose')
    parser.add_argument('pose_checkpoint', help='Checkpoint file for pose')
    parser.add_argument('--img-root', type=str, default='', help='Image root')
    parser.add_argument('--img', type=str, default='', help='Image file')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show img')
    parser.add_argument(
        '--out-img-root',
        type=str,
        default='',
        help='root of the output img file. '
        'Default not saving the visualization images.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
    parser.add_argument(
        '--radius',
        type=int,
        default=4,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=1,
        help='Link thickness for visualization')
    assert has_face_det, 'Please install face_recognition to run the demo. ' \
                         '"pip install face_recognition", For more details, ' \
                         'see https://github.com/ageitgey/face_recognition'
    args = parser.parse_args()
    assert args.show or (args.out_img_root != '')
    assert args.img != ''
    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(
        args.pose_config, args.pose_checkpoint, device=args.device.lower())
    dataset = pose_model.cfg.data['test']['type']
    dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        dataset_info = DatasetInfo(dataset_info)
    image_name = os.path.join(args.img_root, args.img)
    # test a single image, the resulting box is (top, right, bottom and left)
    image = face_recognition.load_image_file(image_name)
    face_det_results = face_recognition.face_locations(image)
    # keep the person class bounding boxes.
    face_results = process_face_det_results(face_det_results)
    # optional
    return_heatmap = False
    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None
    pose_results, returned_outputs = inference_top_down_pose_model(
        pose_model,
        image_name,
        face_results,
        bbox_thr=None,
        format='xyxy',
        dataset=dataset,
        dataset_info=dataset_info,
        return_heatmap=return_heatmap,
        outputs=output_layer_names)
    if args.out_img_root == '':
        out_file = None
    else:
        os.makedirs(args.out_img_root, exist_ok=True)
        out_file = os.path.join(args.out_img_root, f'vis_{args.img}')
    # show the results
    vis_pose_result(
        pose_model,
        image_name,
        pose_results,
        radius=args.radius,
        thickness=args.thickness,
        dataset=dataset,
        dataset_info=dataset_info,
        kpt_score_thr=args.kpt_thr,
        show=args.show,
        out_file=out_file)
if __name__ == '__main__':
    main()
 |