Spaces:
Sleeping
Sleeping
genevera
commited on
Commit
·
acfa0fb
1
Parent(s):
b561bb5
allow user to set steps, pick scheduler, and make "gradio app.py" work
Browse files
app.py
CHANGED
|
@@ -6,11 +6,25 @@ from modules.AudioToken.embedder import FGAEmbedder
|
|
| 6 |
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 7 |
from diffusers.models.attention_processor import LoRAAttnProcessor
|
| 8 |
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import gradio as gr
|
| 11 |
from scipy import signal
|
| 12 |
|
| 13 |
-
|
| 14 |
class AudioTokenWrapper(torch.nn.Module):
|
| 15 |
"""Simple wrapper module for Stable Diffusion that holds all the models together"""
|
| 16 |
|
|
@@ -22,17 +36,33 @@ class AudioTokenWrapper(torch.nn.Module):
|
|
| 22 |
|
| 23 |
super().__init__()
|
| 24 |
# Load scheduler and models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 26 |
-
|
| 27 |
)
|
| 28 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
| 29 |
-
|
| 30 |
)
|
| 31 |
self.unet = UNet2DConditionModel.from_pretrained(
|
| 32 |
-
|
| 33 |
)
|
| 34 |
self.vae = AutoencoderKL.from_pretrained(
|
| 35 |
-
|
| 36 |
)
|
| 37 |
|
| 38 |
checkpoint = torch.load(
|
|
@@ -90,11 +120,39 @@ class AudioTokenWrapper(torch.nn.Module):
|
|
| 90 |
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
| 91 |
|
| 92 |
|
| 93 |
-
def greet(audio):
|
| 94 |
sample_rate, audio = audio
|
| 95 |
audio = audio.astype(np.float32, order='C') / 32768.0
|
| 96 |
desired_sample_rate = 16000
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
if audio.ndim == 2:
|
| 99 |
audio = audio.sum(axis=1) / 2
|
| 100 |
|
|
@@ -114,49 +172,61 @@ def greet(audio):
|
|
| 114 |
audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
|
| 115 |
if audio_values.ndim == 1:
|
| 116 |
audio_values = torch.unsqueeze(audio_values, dim=0)
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
token_embeds = model.text_encoder.get_input_embeddings().weight.data
|
| 121 |
token_embeds[model.placeholder_token_id] = audio_token.clone()
|
| 122 |
-
|
|
|
|
| 123 |
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 124 |
-
"
|
| 125 |
tokenizer=model.tokenizer,
|
| 126 |
text_encoder=model.text_encoder,
|
| 127 |
vae=model.vae,
|
| 128 |
unet=model.unet,
|
|
|
|
|
|
|
| 129 |
).to(device)
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
return image
|
| 132 |
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from diffusers import AutoencoderKL, UNet2DConditionModel
|
| 7 |
from diffusers.models.attention_processor import LoRAAttnProcessor
|
| 8 |
from diffusers import StableDiffusionPipeline
|
| 9 |
+
from diffusers import (
|
| 10 |
+
DDPMScheduler,
|
| 11 |
+
DDIMScheduler,
|
| 12 |
+
PNDMScheduler,
|
| 13 |
+
LMSDiscreteScheduler,
|
| 14 |
+
EulerDiscreteScheduler,
|
| 15 |
+
EulerAncestralDiscreteScheduler,
|
| 16 |
+
DPMSolverMultistepScheduler,
|
| 17 |
+
DPMSolverSinglestepScheduler,
|
| 18 |
+
DEISMultistepScheduler,
|
| 19 |
+
UniPCMultistepScheduler,
|
| 20 |
+
HeunDiscreteScheduler,
|
| 21 |
+
KDPM2AncestralDiscreteScheduler,
|
| 22 |
+
KDPM2DiscreteScheduler,
|
| 23 |
+
)
|
| 24 |
import numpy as np
|
| 25 |
import gradio as gr
|
| 26 |
from scipy import signal
|
| 27 |
|
|
|
|
| 28 |
class AudioTokenWrapper(torch.nn.Module):
|
| 29 |
"""Simple wrapper module for Stable Diffusion that holds all the models together"""
|
| 30 |
|
|
|
|
| 36 |
|
| 37 |
super().__init__()
|
| 38 |
# Load scheduler and models
|
| 39 |
+
self.ddpm = DDPMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 40 |
+
self.ddim = DDIMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 41 |
+
self.pndm = PNDMScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 42 |
+
self.lms = LMSDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 43 |
+
self.euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 44 |
+
self.euler = EulerDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 45 |
+
self.dpm = DPMSolverMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 46 |
+
self.dpms = DPMSolverSinglestepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 47 |
+
self.deis = DEISMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 48 |
+
self.unipc = UniPCMultistepScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 49 |
+
self.heun = HeunDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 50 |
+
self.kdpm2_anc = KDPM2AncestralDiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 51 |
+
self.kdpm2 = KDPM2DiscreteScheduler.from_pretrained(repo_id, subfolder="scheduler")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
self.tokenizer = CLIPTokenizer.from_pretrained(
|
| 56 |
+
repo_id, subfolder="tokenizer"
|
| 57 |
)
|
| 58 |
self.text_encoder = CLIPTextModel.from_pretrained(
|
| 59 |
+
repo_id, subfolder="text_encoder", revision=None
|
| 60 |
)
|
| 61 |
self.unet = UNet2DConditionModel.from_pretrained(
|
| 62 |
+
repo_id, subfolder="unet", revision=None
|
| 63 |
)
|
| 64 |
self.vae = AutoencoderKL.from_pretrained(
|
| 65 |
+
repo_id, subfolder="vae", revision=None
|
| 66 |
)
|
| 67 |
|
| 68 |
checkpoint = torch.load(
|
|
|
|
| 120 |
self.text_encoder.resize_token_embeddings(len(self.tokenizer))
|
| 121 |
|
| 122 |
|
| 123 |
+
def greet(audio, steps=25, scheduler="ddpm"):
|
| 124 |
sample_rate, audio = audio
|
| 125 |
audio = audio.astype(np.float32, order='C') / 32768.0
|
| 126 |
desired_sample_rate = 16000
|
| 127 |
|
| 128 |
+
match scheduler:
|
| 129 |
+
case "ddpm":
|
| 130 |
+
use_sched = model.ddpm
|
| 131 |
+
case "ddim":
|
| 132 |
+
use_sched = model.ddim
|
| 133 |
+
case "pndm":
|
| 134 |
+
use_sched = model.pndm
|
| 135 |
+
case "lms":
|
| 136 |
+
use_sched = model.lms
|
| 137 |
+
case "euler_anc":
|
| 138 |
+
use_sched = model.euler_anc
|
| 139 |
+
case "euler":
|
| 140 |
+
use_sched = model.euler
|
| 141 |
+
case "dpm":
|
| 142 |
+
use_sched = model.dpm
|
| 143 |
+
case "dpms":
|
| 144 |
+
use_sched = model.dpms
|
| 145 |
+
case "deis":
|
| 146 |
+
use_sched = model.deis
|
| 147 |
+
case "unipc":
|
| 148 |
+
use_sched = model.unipc
|
| 149 |
+
case "heun":
|
| 150 |
+
use_sched = model.heun
|
| 151 |
+
case "kdpm2_anc":
|
| 152 |
+
use_sched = model.kdpm2_anc
|
| 153 |
+
case "kdpm2":
|
| 154 |
+
use_sched = model.kdpm2
|
| 155 |
+
|
| 156 |
if audio.ndim == 2:
|
| 157 |
audio = audio.sum(axis=1) / 2
|
| 158 |
|
|
|
|
| 172 |
audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
|
| 173 |
if audio_values.ndim == 1:
|
| 174 |
audio_values = torch.unsqueeze(audio_values, dim=0)
|
| 175 |
+
with torch.no_grad():
|
| 176 |
+
torch.cuda.empty_cache()
|
| 177 |
+
aud_features = model.aud_encoder.extract_features(audio_values)[1]
|
| 178 |
+
audio_token = model.embedder(aud_features)
|
| 179 |
|
| 180 |
token_embeds = model.text_encoder.get_input_embeddings().weight.data
|
| 181 |
token_embeds[model.placeholder_token_id] = audio_token.clone()
|
| 182 |
+
g_gpu = torch.Generator(device='cuda')
|
| 183 |
+
g_gpu.manual_seed(23029249075547) # no reason this can't be input by the user!
|
| 184 |
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 185 |
+
"philz1337/reliberate",
|
| 186 |
tokenizer=model.tokenizer,
|
| 187 |
text_encoder=model.text_encoder,
|
| 188 |
vae=model.vae,
|
| 189 |
unet=model.unet,
|
| 190 |
+
scheduler=use_sched,
|
| 191 |
+
safety_checker=None,
|
| 192 |
).to(device)
|
| 193 |
+
pipeline.enable_attention_slicing()
|
| 194 |
+
# pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config)
|
| 195 |
+
# pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 196 |
+
print(f"taking {steps} steps using the {scheduler} scheduler")
|
| 197 |
+
image = pipeline(prompt, num_inference_steps=steps, guidance_scale=8.5, generator=g_gpu).images[0]
|
| 198 |
return image
|
| 199 |
|
| 200 |
|
| 201 |
+
lora = False
|
| 202 |
+
repo_id = "philz1337/reliberate"
|
| 203 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 204 |
+
model = AudioTokenWrapper(lora, device)
|
| 205 |
+
model = model.to(device)
|
| 206 |
+
description = """<p>
|
| 207 |
+
This is a demo of <a href='https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken' target='_blank'>AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation</a>.<br><br>
|
| 208 |
+
A novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations.<br><br>
|
| 209 |
+
For more information, please see the original <a href='https://arxiv.org/abs/2305.13050' target='_blank'>paper</a> and <a href='https://github.com/guyyariv/AudioToken' target='_blank'>repo</a>.
|
| 210 |
+
</p>"""
|
| 211 |
+
|
| 212 |
+
examples = [
|
| 213 |
+
# ["assets/train.wav"],
|
| 214 |
+
# ["assets/dog barking.wav"],
|
| 215 |
+
# ["assets/airplane taking off.wav"],
|
| 216 |
+
# ["assets/electric guitar.wav"],
|
| 217 |
+
# ["assets/female sings.wav"],
|
| 218 |
+
]
|
| 219 |
+
|
| 220 |
+
my_demo = gr.Interface(
|
| 221 |
+
fn=greet,
|
| 222 |
+
inputs=[
|
| 223 |
+
"audio",
|
| 224 |
+
gr.Slider(value=25,step=1,label="diffusion steps"),
|
| 225 |
+
gr.Dropdown(choices=["ddim","ddpm","pndm","lms","euler_anc","euler","dpm","dpms","deis","unipc","heun","kdpm2_anc","kdpm2"],value="unipc"),
|
| 226 |
+
],
|
| 227 |
+
outputs="image",
|
| 228 |
+
title='AudioToken',
|
| 229 |
+
description=description,
|
| 230 |
+
examples=examples
|
| 231 |
+
)
|
| 232 |
+
my_demo.launch()
|