Update app.py
Browse files
app.py
CHANGED
@@ -124,442 +124,6 @@ For severe distress:
|
|
124 |
"""
|
125 |
context = [base_info, mental_health, medical_assistance, medicine_recommendation, decision_guidance, emergency_help]
|
126 |
|
127 |
-
def encrypt_data(data):
|
128 |
-
try:
|
129 |
-
return cipher.encrypt(data.encode('utf-8')).decode('utf-8')
|
130 |
-
except Exception as e:
|
131 |
-
logger.error(f"Encryption failed: {str(e)}")
|
132 |
-
return data
|
133 |
-
|
134 |
-
def decrypt_data(encrypted_data):
|
135 |
-
try:
|
136 |
-
return cipher.decrypt(encrypted_data.encode('utf-8')).decode('utf-8')
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Decryption failed: {str(e)}")
|
139 |
-
return encrypted_data
|
140 |
-
|
141 |
-
@lru_cache(maxsize=100)
|
142 |
-
def cached_transcribe(audio_file, language):
|
143 |
-
audio, sr = librosa.load(audio_file, sr=16000)
|
144 |
-
language_code = {"English": "en", "Hindi": "hi", "Spanish": "es", "Mandarin": "zh"}.get(language, "en")
|
145 |
-
return transcribe_audio(audio, language_code)
|
146 |
-
|
147 |
-
def extract_health_features(audio, sr):
|
148 |
-
try:
|
149 |
-
audio = librosa.util.normalize(audio)
|
150 |
-
frame_duration = 30
|
151 |
-
frame_samples = int(sr * frame_duration / 1000)
|
152 |
-
frames = [audio[i:i + frame_samples] for i in range(0, len(audio), frame_samples)]
|
153 |
-
voiced_frames = [frame for frame in frames if len(frame) == frame_samples and vad.is_speech((frame * 32768).astype(np.int16).tobytes(), sr)]
|
154 |
-
if not voiced_frames:
|
155 |
-
raise ValueError("No voiced segments detected")
|
156 |
-
voiced_audio = np.concatenate(voiced_frames)
|
157 |
-
|
158 |
-
frame_step = max(1, len(voiced_audio) // (sr // 16)) # Increased step for faster processing
|
159 |
-
pitches, magnitudes = librosa.piptrack(y=voiced_audio[::frame_step], sr=sr, fmin=75, fmax=300)
|
160 |
-
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
|
161 |
-
pitch = np.mean(valid_pitches) if valid_pitches else 0
|
162 |
-
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
|
163 |
-
jitter = min(jitter, 10)
|
164 |
-
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=512, hop_length=256)[0] # Increased hop_length
|
165 |
-
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
|
166 |
-
shimmer = min(shimmer, 10)
|
167 |
-
energy = np.mean(amplitudes)
|
168 |
-
|
169 |
-
mfcc = np.mean(librosa.feature.mfcc(y=voiced_audio[::8], sr=sr, n_mfcc=4), axis=1) # Further reduced sampling
|
170 |
-
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=voiced_audio[::8], sr=sr, n_fft=512, hop_length=256))
|
171 |
-
|
172 |
-
logger.debug(f"Extracted features: pitch={pitch:.2f}, jitter={jitter*100:.2f}%, shimmer={shimmer*100:.2f}%, energy={energy:.4f}, mfcc_mean={np.mean(mfcc):.2f}, spectral_centroid={spectral_centroid:.2f}")
|
173 |
-
return {
|
174 |
-
"pitch": pitch,
|
175 |
-
"jitter": jitter * 100,
|
176 |
-
"shimmer": shimmer * 100,
|
177 |
-
"energy": energy,
|
178 |
-
"mfcc_mean": np.mean(mfcc),
|
179 |
-
"spectral_centroid": spectral_centroid
|
180 |
-
}
|
181 |
-
except Exception as e:
|
182 |
-
logger.error(f"Feature extraction failed: {str(e)}")
|
183 |
-
raise
|
184 |
-
|
185 |
-
def transcribe_audio(audio, language="en"):
|
186 |
-
try:
|
187 |
-
whisper_model.config.forced_decoder_ids = whisper_processor.get_decoder_prompt_ids(
|
188 |
-
language=SUPPORTED_LANGUAGES.get({"en": "English", "hi": "Hindi", "es": "Spanish", "zh": "Mandarin"}.get(language, "English"), "english"), task="transcribe"
|
189 |
-
)
|
190 |
-
inputs = whisper_processor(audio, sampling_rate=16000, return_tensors="pt")
|
191 |
-
with torch.no_grad():
|
192 |
-
generated_ids = whisper_model.generate(inputs["input_features"], max_new_tokens=20) # Further reduced tokens
|
193 |
-
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
194 |
-
logger.info(f"Transcription (language: {language}): {transcription}")
|
195 |
-
return transcription
|
196 |
-
except Exception as e:
|
197 |
-
logger.error(f"Transcription failed: {str(e)}")
|
198 |
-
return None
|
199 |
-
|
200 |
-
async def get_chatbot_response(message, language="en", retries=2, timeout=10):
|
201 |
-
if not message:
|
202 |
-
return "No input provided. Please describe your symptoms or concerns.", None
|
203 |
-
if not chat:
|
204 |
-
logger.warning("Gemini chat object is None, attempting to reinitialize")
|
205 |
-
global chat
|
206 |
-
chat = initialize_gemini()
|
207 |
-
if not chat:
|
208 |
-
return "Error: Unable to connect to Gemini API. Please check API key.", None
|
209 |
-
|
210 |
-
language_code = {"English": "en", "Hindi": "hi", "Spanish": "es", "Mandarin": "zh"}.get(language, "en")
|
211 |
-
full_context = "\n".join(context) + f"\nUser: {message}\nMindCare: Provide response in 6-8 simple bullet points, tailored to the user's input, in a clear and empathetic tone."
|
212 |
-
|
213 |
-
for attempt in range(retries + 1):
|
214 |
-
try:
|
215 |
-
async with asyncio.timeout(timeout):
|
216 |
-
response = await asyncio.get_event_loop().run_in_executor(None, lambda: chat.send_message(full_context).text)
|
217 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
218 |
-
tts = gTTS(text=response, lang=language_code, slow=False)
|
219 |
-
tts.save(temp_audio.name)
|
220 |
-
audio_path = temp_audio.name
|
221 |
-
logger.info(f"Generated response: {response[:100]}... and audio at {audio_path}")
|
222 |
-
return response, audio_path
|
223 |
-
except asyncio.TimeoutError:
|
224 |
-
logger.error(f"Chatbot response timed out on attempt {attempt + 1}")
|
225 |
-
if attempt == retries:
|
226 |
-
return "Error: Response generation timed out.", None
|
227 |
-
except Exception as e:
|
228 |
-
logger.error(f"Chatbot response failed on attempt {attempt + 1}: {str(e)}")
|
229 |
-
if attempt == retries:
|
230 |
-
return f"Error generating response: {str(e)}", None
|
231 |
-
await asyncio.sleep(1) # Brief delay between retries
|
232 |
-
return "Error: Unable to generate response after retries.", None
|
233 |
-
|
234 |
-
async def translate_text(text, target_language, retries=2, timeout=10):
|
235 |
-
if not chat or not text:
|
236 |
-
return text
|
237 |
-
if target_language == "English":
|
238 |
-
return text
|
239 |
-
language_code = {"Hindi": "hi", "Spanish": "es", "Mandarin": "zh"}.get(target_language, "en")
|
240 |
-
prompt = f"Translate the following text into {target_language} while preserving formatting (e.g., bullet points, newlines):\n\n{text}"
|
241 |
-
|
242 |
-
for attempt in range(retries + 1):
|
243 |
-
try:
|
244 |
-
async with asyncio.timeout(timeout):
|
245 |
-
response = await asyncio.get_event_loop().run_in_executor(None, lambda: chat.send_message(prompt).text)
|
246 |
-
logger.info(f"Translated text to {target_language}: {response[:100]}...")
|
247 |
-
return response
|
248 |
-
except asyncio.TimeoutError:
|
249 |
-
logger.error(f"Translation to {target_language} timed out on attempt {attempt + 1}")
|
250 |
-
if attempt == retries:
|
251 |
-
return text
|
252 |
-
except Exception as e:
|
253 |
-
logger.error(f"Translation to {target_language} failed on attempt {attempt + 1}: {str(e)}")
|
254 |
-
if attempt == retries:
|
255 |
-
return text
|
256 |
-
await asyncio.sleep(1)
|
257 |
-
return text
|
258 |
-
|
259 |
-
async def analyze_symptoms(text, features, language="English"):
|
260 |
-
feedback = []
|
261 |
-
suggestions = []
|
262 |
-
text = text.lower() if text else ""
|
263 |
-
|
264 |
-
# Generate health assessment feedback
|
265 |
-
if "cough" in text or "coughing" in text:
|
266 |
-
feedback.append("You mentioned a cough, which may suggest a cold or respiratory issue.")
|
267 |
-
suggestions.extend([
|
268 |
-
"• Drink warm fluids like herbal tea or water to soothe your throat.",
|
269 |
-
"• Rest to help your body recover from possible infection.",
|
270 |
-
"• Use a humidifier to ease throat irritation.",
|
271 |
-
"• Consider over-the-counter cough remedies, but consult a doctor first.",
|
272 |
-
"• Monitor symptoms; see a doctor if the cough lasts over a week."
|
273 |
-
])
|
274 |
-
elif "fever" in text or "temperature" in text:
|
275 |
-
feedback.append("You mentioned a fever, which could indicate an infection.")
|
276 |
-
suggestions.extend([
|
277 |
-
"• Stay hydrated with water or electrolyte drinks.",
|
278 |
-
"• Rest to support your immune system.",
|
279 |
-
"• Monitor your temperature regularly.",
|
280 |
-
"• Use paracetamol to reduce fever, but follow dosage instructions.",
|
281 |
-
"• Seek medical advice if fever exceeds 100.4°F (38°C) for over 2 days."
|
282 |
-
])
|
283 |
-
elif "headache" in text:
|
284 |
-
feedback.append("You mentioned a headache, possibly due to stress or dehydration.")
|
285 |
-
suggestions.extend([
|
286 |
-
"• Drink plenty of water to stay hydrated.",
|
287 |
-
"• Take short breaks to relax your mind.",
|
288 |
-
"• Try a mild pain reliever like ibuprofen, but consult a doctor.",
|
289 |
-
"• Practice deep breathing to reduce tension.",
|
290 |
-
"• Ensure you're getting enough sleep (7-8 hours)."
|
291 |
-
])
|
292 |
-
elif "stress" in text or "anxious" in text or "mental stress" in text:
|
293 |
-
feedback.append("You mentioned stress or anxiety, which can affect well-being.")
|
294 |
-
suggestions.extend([
|
295 |
-
"• Try 5 minutes of deep breathing to calm your mind.",
|
296 |
-
"• Write in a journal to process your thoughts.",
|
297 |
-
"• Take a short walk in nature to relax.",
|
298 |
-
"• Practice mindfulness or meditation daily.",
|
299 |
-
"• Talk to a trusted friend or professional for support.",
|
300 |
-
"• Prioritize sleep and avoid excessive caffeine."
|
301 |
-
])
|
302 |
-
elif "respiratory" in text or "breathing" in text or "shortness of breath" in text:
|
303 |
-
feedback.append("You mentioned breathing issues, which may indicate asthma or infection.")
|
304 |
-
suggestions.extend([
|
305 |
-
"• Avoid triggers like smoke or allergens.",
|
306 |
-
"• Practice slow, deep breathing exercises.",
|
307 |
-
"• Stay in a well-ventilated area.",
|
308 |
-
"• Monitor symptoms and seek medical help if severe.",
|
309 |
-
"• Rest to reduce strain on your respiratory system."
|
310 |
-
])
|
311 |
-
elif "cold" in text:
|
312 |
-
feedback.append("You mentioned a cold, likely a viral infection.")
|
313 |
-
suggestions.extend([
|
314 |
-
"• Drink warm fluids like soup or tea.",
|
315 |
-
"• Rest to help your body fight the virus.",
|
316 |
-
"• Use saline nasal spray to relieve congestion.",
|
317 |
-
"• Take over-the-counter cold remedies, but consult a doctor.",
|
318 |
-
"• Stay hydrated and avoid strenuous activity."
|
319 |
-
])
|
320 |
-
|
321 |
-
# Voice feature-based feedback and suggestions
|
322 |
-
if features["jitter"] > 6.5:
|
323 |
-
feedback.append(f"High jitter ({features['jitter']:.2f}%) suggests vocal strain or respiratory issues.")
|
324 |
-
suggestions.append("• Rest your voice and avoid shouting.")
|
325 |
-
elif features["jitter"] > 4.0:
|
326 |
-
feedback.append(f"Moderate jitter ({features['jitter']:.2f}%) indicates possible vocal instability.")
|
327 |
-
suggestions.append("• Sip warm water to soothe your vocal cords.")
|
328 |
-
|
329 |
-
if features["shimmer"] > 7.5:
|
330 |
-
feedback.append(f"High shimmer ({features['shimmer']:.2f}%) may indicate emotional stress.")
|
331 |
-
suggestions.append("• Try relaxation techniques like yoga or meditation.")
|
332 |
-
elif features["shimmer"] > 5.0:
|
333 |
-
feedback.append(f"Moderate shimmer ({features['shimmer']:.2f}%) suggests mild vocal strain.")
|
334 |
-
suggestions.append("• Stay hydrated to support vocal health.")
|
335 |
-
|
336 |
-
if features["energy"] < 0.003:
|
337 |
-
feedback.append(f"Low vocal energy ({features['energy']:.4f}) may indicate fatigue.")
|
338 |
-
suggestions.append("• Ensure 7-8 hours of sleep nightly.")
|
339 |
-
elif features["energy"] < 0.007:
|
340 |
-
feedback.append(f"Low vocal energy ({features['energy']:.4f}) suggests possible tiredness.")
|
341 |
-
suggestions.append("• Take short naps to boost energy.")
|
342 |
-
|
343 |
-
if features["pitch"] < 70 or features["pitch"] > 290:
|
344 |
-
feedback.append(f"Unusual pitch ({features['pitch']:.2f} Hz) may indicate vocal issues.")
|
345 |
-
suggestions.append("• Consult a doctor for a vocal health check.")
|
346 |
-
elif 70 <= features["pitch"] <= 90 or 270 <= features["pitch"] <= 290:
|
347 |
-
feedback.append(f"Pitch ({features['pitch']:.2f} Hz) is slightly outside typical range.")
|
348 |
-
suggestions.append("• Avoid straining your voice during conversations.")
|
349 |
-
|
350 |
-
if features["spectral_centroid"] > 2700:
|
351 |
-
feedback.append(f"High spectral centroid ({features['spectral_centroid']:.2f} Hz) suggests tense speech.")
|
352 |
-
suggestions.append("• Practice slow, calm speaking to reduce tension.")
|
353 |
-
elif features["spectral_centroid"] > 2200:
|
354 |
-
feedback.append(f"Elevated spectral centroid ({features['spectral_centroid']:.2f} Hz) may indicate mild tension.")
|
355 |
-
suggestions.append("• Relax your jaw and shoulders while speaking.")
|
356 |
-
|
357 |
-
if not feedback:
|
358 |
-
feedback.append("No significant health concerns detected from voice or text analysis.")
|
359 |
-
suggestions.extend([
|
360 |
-
"• Maintain a balanced diet with fruits and vegetables.",
|
361 |
-
"• Exercise regularly for overall health.",
|
362 |
-
"• Stay hydrated with 8 glasses of water daily.",
|
363 |
-
"• Get 7-8 hours of sleep each night.",
|
364 |
-
"• Practice stress-relief techniques like meditation.",
|
365 |
-
"• Schedule regular health check-ups."
|
366 |
-
])
|
367 |
-
|
368 |
-
# Ensure suggestions are limited to 6-8 unique items
|
369 |
-
suggestions = list(dict.fromkeys(suggestions))[:8]
|
370 |
-
if len(suggestions) < 6:
|
371 |
-
suggestions.extend([
|
372 |
-
"• Stay active with light exercise like walking.",
|
373 |
-
"• Practice gratitude to boost mental well-being."
|
374 |
-
][:6 - len(suggestions)])
|
375 |
-
|
376 |
-
# Translate feedback and suggestions to the selected language
|
377 |
-
feedback_text = "\n".join(feedback)
|
378 |
-
suggestions_text = "\n".join(suggestions)
|
379 |
-
try:
|
380 |
-
translated_feedback = await translate_text(feedback_text, language)
|
381 |
-
translated_suggestions = await translate_text(suggestions_text, language)
|
382 |
-
except Exception as e:
|
383 |
-
logger.error(f"Translation failed: {str(e)}")
|
384 |
-
translated_feedback = feedback_text
|
385 |
-
translated_suggestions = suggestions_text
|
386 |
-
|
387 |
-
logger.debug(f"Generated feedback: {translated_feedback}, Suggestions: {translated_suggestions}")
|
388 |
-
return translated_feedback, translated_suggestions
|
389 |
-
|
390 |
-
def store_user_consent(email, language):
|
391 |
-
if not sf:
|
392 |
-
logger.warning("Salesforce not connected; skipping consent storage")
|
393 |
-
return None
|
394 |
-
try:
|
395 |
-
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
|
396 |
-
sanitized_email = email_to_use.replace("'", "\\'").replace('"', '\\"')
|
397 |
-
query = f"SELECT Id FROM HealthUser__c WHERE Email__c = '{sanitized_email}'"
|
398 |
-
logger.debug(f"Executing SOQL query: {query}")
|
399 |
-
user = sf.query(query)
|
400 |
-
user_id = None
|
401 |
-
if user["totalSize"] == 0:
|
402 |
-
logger.info(f"No user found for email: {sanitized_email}, creating new user")
|
403 |
-
user = sf.HealthUser__c.create({
|
404 |
-
"Email__c": sanitized_email,
|
405 |
-
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
|
406 |
-
"ConsentGiven__c": True
|
407 |
-
})
|
408 |
-
user_id = user["id"]
|
409 |
-
logger.info(f"Created new user with email: {sanitized_email}, ID: {user_id}")
|
410 |
-
else:
|
411 |
-
user_id = user["records"][0]["Id"]
|
412 |
-
logger.info(f"Found existing user with email: {sanitized_email}, ID: {user_id}")
|
413 |
-
sf.HealthUser__c.update(user_id, {
|
414 |
-
"Language__c": SALESFORCE_LANGUAGE_MAP.get(language, "English"),
|
415 |
-
"ConsentGiven__c": True
|
416 |
-
})
|
417 |
-
logger.info(f"Updated user with email: {sanitized_email}")
|
418 |
-
sf.ConsentLog__c.create({
|
419 |
-
"HealthUser__c": user_id,
|
420 |
-
"ConsentType__c": "Voice Analysis",
|
421 |
-
"ConsentDate__c": datetime.utcnow().isoformat()
|
422 |
-
})
|
423 |
-
logger.info(f"Stored consent log for user ID: {user_id}")
|
424 |
-
return user_id
|
425 |
-
except Exception as e:
|
426 |
-
logger.error(f"Consent storage failed: {str(e)}")
|
427 |
-
logger.exception("Stack trace for consent storage failure:")
|
428 |
-
return None
|
429 |
-
|
430 |
-
def generate_pdf_report(feedback, transcription, features, language, email, suggestions):
|
431 |
-
try:
|
432 |
-
feedback = feedback.replace('<', '<').replace:
|
433 |
-
|
434 |
-
System: **Updated Code with Fixes for Error and Performance**
|
435 |
-
|
436 |
-
<xaiArtifact artifact_id="15a4c230-0090-4372-9c79-3b68c1f53acc" artifact_version_id="b21f972a-9b0b-4e87-bc53-ef7ca9e86329" title="main.py" contentType="text/python">
|
437 |
-
import gradio as gr
|
438 |
-
import librosa
|
439 |
-
import numpy as np
|
440 |
-
import torch
|
441 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
442 |
-
from simple_salesforce import Salesforce
|
443 |
-
import os
|
444 |
-
from datetime import datetime
|
445 |
-
import logging
|
446 |
-
import webrtcvad
|
447 |
-
import google.generativeai as genai
|
448 |
-
from gtts import gTTS
|
449 |
-
import tempfile
|
450 |
-
import base64
|
451 |
-
import re
|
452 |
-
from cryptography.fernet import Fernet
|
453 |
-
import pytz
|
454 |
-
from reportlab.lib.pagesizes import A4
|
455 |
-
from reportlab.lib import colors
|
456 |
-
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, ListFlowable, ListItem
|
457 |
-
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
458 |
-
from reportlab.lib.units import inch
|
459 |
-
import asyncio
|
460 |
-
import hashlib
|
461 |
-
from functools import lru_cache
|
462 |
-
|
463 |
-
# Set up logging with DEBUG level, adjusted for IST
|
464 |
-
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
465 |
-
logger = logging.getLogger(__name__)
|
466 |
-
usage_metrics = {"total_assessments": 0, "assessments_by_language": {}}
|
467 |
-
|
468 |
-
# Environment variables
|
469 |
-
SF_USERNAME = os.getenv("SF_USERNAME", "[email protected]")
|
470 |
-
SF_PASSWORD = os.getenv("SF_PASSWORD", "voicebot1")
|
471 |
-
SF_SECURITY_TOKEN = os.getenv("SF_SECURITY_TOKEN", "jq4VVHUFti6TmzJDjjegv2h6b")
|
472 |
-
SF_INSTANCE_URL = os.getenv("SF_INSTANCE_URL", "https://swe42.sfdc-cehfhs.salesforce.com")
|
473 |
-
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY", "AIzaSyBzr5vVpbe8CV1v70l3pGDp9vRJ76yCxdk")
|
474 |
-
ENCRYPTION_KEY = os.getenv("ENCRYPTION_KEY", Fernet.generate_key().decode())
|
475 |
-
DEFAULT_EMAIL = os.getenv("SALESFORCE_USER_EMAIL", "[email protected]")
|
476 |
-
|
477 |
-
# Initialize encryption
|
478 |
-
cipher = Fernet(ENCRYPTION_KEY)
|
479 |
-
|
480 |
-
# Initialize Salesforce
|
481 |
-
try:
|
482 |
-
sf = Salesforce(
|
483 |
-
username=SF_USERNAME,
|
484 |
-
password=SF_PASSWORD,
|
485 |
-
security_token=SF_SECURITY_TOKEN,
|
486 |
-
instance_url=SF_INSTANCE_URL
|
487 |
-
)
|
488 |
-
logger.info(f"Connected to Salesforce at {SF_INSTANCE_URL}")
|
489 |
-
except Exception as e:
|
490 |
-
logger.error(f"Salesforce connection failed: {str(e)}")
|
491 |
-
sf = None
|
492 |
-
|
493 |
-
# Initialize Google Gemini with retry logic
|
494 |
-
def initialize_gemini():
|
495 |
-
try:
|
496 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
497 |
-
gemini_model = genai.GenerativeModel('gemini-1.5-flash')
|
498 |
-
chat = gemini_model.start_chat(history=[])
|
499 |
-
logger.info("Connected to Google Gemini")
|
500 |
-
return chat
|
501 |
-
except Exception as e:
|
502 |
-
logger.error(f"Google Gemini initialization failed: {str(e)}")
|
503 |
-
return None
|
504 |
-
|
505 |
-
chat = initialize_gemini()
|
506 |
-
|
507 |
-
# Load Whisper model
|
508 |
-
SUPPORTED_LANGUAGES = {"English": "english", "Hindi": "hindi", "Spanish": "spanish", "Mandarin": "mandarin"}
|
509 |
-
SALESFORCE_LANGUAGE_MAP = {"English": "English", "Hindi": "Hindi", "Spanish": "Spanish", "Mandarin": "Mandarin"}
|
510 |
-
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
511 |
-
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
512 |
-
vad = webrtcvad.Vad(mode=2)
|
513 |
-
|
514 |
-
# Context for chatbot
|
515 |
-
base_info = """
|
516 |
-
MindCare is an AI health assistant focused on:
|
517 |
-
- **Mental health**: Emotional support, mindfulness, stress-relief, anxiety management.
|
518 |
-
- **Medical guidance**: Symptom analysis, possible conditions, medicine recommendations.
|
519 |
-
- **Decision-making**: Personal, professional, emotional choices.
|
520 |
-
- **General health**: Lifestyle, nutrition, physical and mental wellness.
|
521 |
-
- **Emergency assistance**: Suggest professional help or helplines for distress.
|
522 |
-
Tone: Empathetic, supportive, informative.
|
523 |
-
"""
|
524 |
-
mental_health = """
|
525 |
-
For stress/anxiety:
|
526 |
-
- Suggest mindfulness, deep breathing, gratitude journaling.
|
527 |
-
- Encourage breaks, hobbies, nature.
|
528 |
-
- Provide affirmations, self-care routines.
|
529 |
-
For distress:
|
530 |
-
- Offer emotional support, assure they’re not alone.
|
531 |
-
- Suggest trusted contacts or professionals.
|
532 |
-
- Provide crisis helplines.
|
533 |
-
"""
|
534 |
-
medical_assistance = """
|
535 |
-
For symptoms:
|
536 |
-
- Analyze and suggest possible conditions.
|
537 |
-
- Offer general advice, not replacing doctor consultation.
|
538 |
-
- Suggest lifestyle changes, home remedies.
|
539 |
-
- Advise medical attention for severe symptoms.
|
540 |
-
"""
|
541 |
-
medicine_recommendation = """
|
542 |
-
For medicine queries:
|
543 |
-
- Suggest common antibiotics (e.g., Amoxicillin), painkillers (e.g., Paracetamol, Ibuprofen).
|
544 |
-
- Note precautions, side effects.
|
545 |
-
- Stress doctor consultation before use.
|
546 |
-
"""
|
547 |
-
decision_guidance = """
|
548 |
-
For decisions:
|
549 |
-
- Weigh pros/cons logically.
|
550 |
-
- Consider values, goals, emotions.
|
551 |
-
- Suggest decision matrices or intuitive checks.
|
552 |
-
- Encourage trusted advice if needed.
|
553 |
-
"""
|
554 |
-
emergency_help = """
|
555 |
-
For severe distress:
|
556 |
-
- Provide immediate emotional support.
|
557 |
-
- Offer crisis helplines (region-specific).
|
558 |
-
- Encourage talking to trusted contacts or professionals.
|
559 |
-
- Assure help is available.
|
560 |
-
"""
|
561 |
-
context = [base_info, mental_health, medical_assistance, medicine_recommendation, decision_guidance, emergency_help]
|
562 |
-
|
563 |
def encrypt_data(data):
|
564 |
try:
|
565 |
return cipher.encrypt(data.encode('utf-8')).decode('utf-8')
|
@@ -595,18 +159,18 @@ def extract_health_features(audio, sr):
|
|
595 |
raise ValueError("No voiced segments detected")
|
596 |
voiced_audio = np.concatenate(voiced_frames)
|
597 |
|
598 |
-
frame_step = max(1, len(voiced_audio) // (sr // 16))
|
599 |
pitches, magnitudes = librosa.piptrack(y=voiced_audio[::frame_step], sr=sr, fmin=75, fmax=300)
|
600 |
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
|
601 |
pitch = np.mean(valid_pitches) if valid_pitches else 0
|
602 |
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
|
603 |
jitter = min(jitter, 10)
|
604 |
-
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=512, hop_length=256)[0]
|
605 |
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
|
606 |
shimmer = min(shimmer, 10)
|
607 |
energy = np.mean(amplitudes)
|
608 |
|
609 |
-
mfcc = np.mean(librosa.feature.mfcc(y=voiced_audio[::8], sr=sr, n_mfcc=4), axis=1)
|
610 |
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=voiced_audio[::8], sr=sr, n_fft=512, hop_length=256))
|
611 |
|
612 |
logger.debug(f"Extracted features: pitch={pitch:.2f}, jitter={jitter*100:.2f}%, shimmer={shimmer*100:.2f}%, energy={energy:.4f}, mfcc_mean={np.mean(mfcc):.2f}, spectral_centroid={spectral_centroid:.2f}")
|
@@ -627,7 +191,7 @@ def extract_health_features(audio, sr):
|
|
627 |
"energy": 0,
|
628 |
"mfcc_mean": 0,
|
629 |
"spectral_centroid": 0
|
630 |
-
}
|
631 |
|
632 |
def transcribe_audio(audio, language="en"):
|
633 |
try:
|
@@ -636,7 +200,7 @@ def transcribe_audio(audio, language="en"):
|
|
636 |
)
|
637 |
inputs = whisper_processor(audio, sampling_rate=16000, return_tensors="pt")
|
638 |
with torch.no_grad():
|
639 |
-
generated_ids = whisper_model.generate(inputs["input_features"], max_new_tokens=20)
|
640 |
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
641 |
logger.info(f"Transcription (language: {language}): {transcription}")
|
642 |
return transcription
|
@@ -675,7 +239,7 @@ async def get_chatbot_response(message, language="en", retries=2, timeout=10):
|
|
675 |
logger.error(f"Chatbot response failed on attempt {attempt + 1}: {str(e)}")
|
676 |
if attempt == retries:
|
677 |
return f"Error generating response: {str(e)}", None
|
678 |
-
await asyncio.sleep(1)
|
679 |
return "Error: Unable to generate response after retries.", None
|
680 |
|
681 |
async def translate_text(text, target_language, retries=2, timeout=10):
|
@@ -708,7 +272,6 @@ async def analyze_symptoms(text, features, language="English"):
|
|
708 |
suggestions = []
|
709 |
text = text.lower() if text else ""
|
710 |
|
711 |
-
# Generate health assessment feedback
|
712 |
if "cough" in text or "coughing" in text:
|
713 |
feedback.append("You mentioned a cough, which may suggest a cold or respiratory issue.")
|
714 |
suggestions.extend([
|
@@ -765,7 +328,6 @@ async def analyze_symptoms(text, features, language="English"):
|
|
765 |
"• Stay hydrated and avoid strenuous activity."
|
766 |
])
|
767 |
|
768 |
-
# Voice feature-based feedback and suggestions
|
769 |
if features["jitter"] > 6.5:
|
770 |
feedback.append(f"High jitter ({features['jitter']:.2f}%) suggests vocal strain or respiratory issues.")
|
771 |
suggestions.append("• Rest your voice and avoid shouting.")
|
@@ -812,7 +374,6 @@ async def analyze_symptoms(text, features, language="English"):
|
|
812 |
"• Schedule regular health check-ups."
|
813 |
])
|
814 |
|
815 |
-
# Ensure suggestions are limited to 6-8 unique items
|
816 |
suggestions = list(dict.fromkeys(suggestions))[:8]
|
817 |
if len(suggestions) < 6:
|
818 |
suggestions.extend([
|
@@ -820,7 +381,6 @@ async def analyze_symptoms(text, features, language="English"):
|
|
820 |
"• Practice gratitude to boost mental well-being."
|
821 |
][:6 - len(suggestions)])
|
822 |
|
823 |
-
# Translate feedback and suggestions to the selected language
|
824 |
feedback_text = "\n".join(feedback)
|
825 |
suggestions_text = "\n".join(suggestions)
|
826 |
try:
|
@@ -876,11 +436,11 @@ def store_user_consent(email, language):
|
|
876 |
|
877 |
def generate_pdf_report(feedback, transcription, features, language, email, suggestions):
|
878 |
try:
|
879 |
-
feedback = feedback.replace('<', '
|
880 |
-
transcription = transcription.replace('<', '
|
881 |
-
suggestions = suggestions.replace('<', '
|
882 |
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
|
883 |
-
email = email_to_use.replace('<', '
|
884 |
language_display = SALESFORCE_LANGUAGE_MAP.get(language, "English")
|
885 |
|
886 |
ist = pytz.timezone('Asia/Kolkata')
|
@@ -935,7 +495,6 @@ def generate_pdf_report(feedback, transcription, features, language, email, sugg
|
|
935 |
fontName='Times-Roman'
|
936 |
)
|
937 |
|
938 |
-
# Translate PDF section titles to the selected language
|
939 |
section_titles = {
|
940 |
"English": {
|
941 |
"title": "MindCare Health Assistant Report",
|
@@ -1167,7 +726,6 @@ async def analyze_voice(audio_file=None, language="English", email=None):
|
|
1167 |
feedback += f"- Email: {email if email and email.strip() else DEFAULT_EMAIL}\n"
|
1168 |
feedback += "\n**Disclaimer**: This is a preliminary analysis. Consult a healthcare provider for professional evaluation."
|
1169 |
|
1170 |
-
# Translate the additional feedback details to the selected language
|
1171 |
details_to_translate = (
|
1172 |
f"Voice Analysis Details:\n"
|
1173 |
f"- Pitch: {features['pitch']:.2f} Hz\n"
|
|
|
124 |
"""
|
125 |
context = [base_info, mental_health, medical_assistance, medicine_recommendation, decision_guidance, emergency_help]
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
def encrypt_data(data):
|
128 |
try:
|
129 |
return cipher.encrypt(data.encode('utf-8')).decode('utf-8')
|
|
|
159 |
raise ValueError("No voiced segments detected")
|
160 |
voiced_audio = np.concatenate(voiced_frames)
|
161 |
|
162 |
+
frame_step = max(1, len(voiced_audio) // (sr // 16))
|
163 |
pitches, magnitudes = librosa.piptrack(y=voiced_audio[::frame_step], sr=sr, fmin=75, fmax=300)
|
164 |
valid_pitches = [p for p in pitches[magnitudes > 0] if 75 <= p <= 300]
|
165 |
pitch = np.mean(valid_pitches) if valid_pitches else 0
|
166 |
jitter = np.std(valid_pitches) / pitch if pitch and valid_pitches else 0
|
167 |
jitter = min(jitter, 10)
|
168 |
+
amplitudes = librosa.feature.rms(y=voiced_audio, frame_length=512, hop_length=256)[0]
|
169 |
shimmer = np.std(amplitudes) / np.mean(amplitudes) if np.mean(amplitudes) else 0
|
170 |
shimmer = min(shimmer, 10)
|
171 |
energy = np.mean(amplitudes)
|
172 |
|
173 |
+
mfcc = np.mean(librosa.feature.mfcc(y=voiced_audio[::8], sr=sr, n_mfcc=4), axis=1)
|
174 |
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=voiced_audio[::8], sr=sr, n_fft=512, hop_length=256))
|
175 |
|
176 |
logger.debug(f"Extracted features: pitch={pitch:.2f}, jitter={jitter*100:.2f}%, shimmer={shimmer*100:.2f}%, energy={energy:.4f}, mfcc_mean={np.mean(mfcc):.2f}, spectral_centroid={spectral_centroid:.2f}")
|
|
|
191 |
"energy": 0,
|
192 |
"mfcc_mean": 0,
|
193 |
"spectral_centroid": 0
|
194 |
+
}
|
195 |
|
196 |
def transcribe_audio(audio, language="en"):
|
197 |
try:
|
|
|
200 |
)
|
201 |
inputs = whisper_processor(audio, sampling_rate=16000, return_tensors="pt")
|
202 |
with torch.no_grad():
|
203 |
+
generated_ids = whisper_model.generate(inputs["input_features"], max_new_tokens=20)
|
204 |
transcription = whisper_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
205 |
logger.info(f"Transcription (language: {language}): {transcription}")
|
206 |
return transcription
|
|
|
239 |
logger.error(f"Chatbot response failed on attempt {attempt + 1}: {str(e)}")
|
240 |
if attempt == retries:
|
241 |
return f"Error generating response: {str(e)}", None
|
242 |
+
await asyncio.sleep(1)
|
243 |
return "Error: Unable to generate response after retries.", None
|
244 |
|
245 |
async def translate_text(text, target_language, retries=2, timeout=10):
|
|
|
272 |
suggestions = []
|
273 |
text = text.lower() if text else ""
|
274 |
|
|
|
275 |
if "cough" in text or "coughing" in text:
|
276 |
feedback.append("You mentioned a cough, which may suggest a cold or respiratory issue.")
|
277 |
suggestions.extend([
|
|
|
328 |
"• Stay hydrated and avoid strenuous activity."
|
329 |
])
|
330 |
|
|
|
331 |
if features["jitter"] > 6.5:
|
332 |
feedback.append(f"High jitter ({features['jitter']:.2f}%) suggests vocal strain or respiratory issues.")
|
333 |
suggestions.append("• Rest your voice and avoid shouting.")
|
|
|
374 |
"• Schedule regular health check-ups."
|
375 |
])
|
376 |
|
|
|
377 |
suggestions = list(dict.fromkeys(suggestions))[:8]
|
378 |
if len(suggestions) < 6:
|
379 |
suggestions.extend([
|
|
|
381 |
"• Practice gratitude to boost mental well-being."
|
382 |
][:6 - len(suggestions)])
|
383 |
|
|
|
384 |
feedback_text = "\n".join(feedback)
|
385 |
suggestions_text = "\n".join(suggestions)
|
386 |
try:
|
|
|
436 |
|
437 |
def generate_pdf_report(feedback, transcription, features, language, email, suggestions):
|
438 |
try:
|
439 |
+
feedback = feedback.replace('<', '<').replace('>', '>').replace('&', '&')
|
440 |
+
transcription = transcription.replace('<', '<').replace('>', '>').replace('&', '&') if transcription else "None"
|
441 |
+
suggestions = suggestions.replace('<', '<').replace('>', '>').replace('&', '&') if suggestions else "None"
|
442 |
email_to_use = email.strip() if email and email.strip() else DEFAULT_EMAIL
|
443 |
+
email = email_to_use.replace('<', '<').replace('>', '>').replace('&', '&')
|
444 |
language_display = SALESFORCE_LANGUAGE_MAP.get(language, "English")
|
445 |
|
446 |
ist = pytz.timezone('Asia/Kolkata')
|
|
|
495 |
fontName='Times-Roman'
|
496 |
)
|
497 |
|
|
|
498 |
section_titles = {
|
499 |
"English": {
|
500 |
"title": "MindCare Health Assistant Report",
|
|
|
726 |
feedback += f"- Email: {email if email and email.strip() else DEFAULT_EMAIL}\n"
|
727 |
feedback += "\n**Disclaimer**: This is a preliminary analysis. Consult a healthcare provider for professional evaluation."
|
728 |
|
|
|
729 |
details_to_translate = (
|
730 |
f"Voice Analysis Details:\n"
|
731 |
f"- Pitch: {features['pitch']:.2f} Hz\n"
|