Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,21 +3,52 @@ from gtts import gTTS
|
|
3 |
import tempfile
|
4 |
from transformers import pipeline
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Configure Hugging Face API Token (Replace with your actual token)
|
8 |
HUGGINGFACE_API_TOKEN = "your_huggingface_api_token" # Replace with your Hugging Face API token
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Initialize Hugging Face Whisper model for speech-to-text (multilingual support)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Initialize Hugging Face text generation model for chatbot
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Define chatbot knowledge base
|
23 |
base_info = """
|
@@ -89,9 +120,13 @@ context = [base_info, mental_health, medical_assistance, medicine_recommendation
|
|
89 |
|
90 |
# Function to get AI response using text generation model
|
91 |
def get_llm_response(message):
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Function to process voice input and convert to text
|
97 |
def process_voice_input(audio_file, language="en"):
|
@@ -108,29 +143,34 @@ def process_voice_input(audio_file, language="en"):
|
|
108 |
generate_kwargs={"language": language_map.get(language, "english")})
|
109 |
return transcription["text"]
|
110 |
except Exception as e:
|
|
|
111 |
return f"Error processing audio: {str(e)}"
|
112 |
|
113 |
# Define chatbot response function with voice and text input
|
114 |
def bot(message=None, audio_file=None, language="en", history=None):
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
|
135 |
# Create Gradio interface with voice and text input
|
136 |
demo = gr.Interface(
|
@@ -149,4 +189,9 @@ demo = gr.Interface(
|
|
149 |
)
|
150 |
|
151 |
# Launch the Gradio app
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import tempfile
|
4 |
from transformers import pipeline
|
5 |
import os
|
6 |
+
import logging
|
7 |
+
from huggingface_hub import login
|
8 |
+
|
9 |
+
# Set up logging for better error tracking
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
|
13 |
# Configure Hugging Face API Token (Replace with your actual token)
|
14 |
HUGGINGFACE_API_TOKEN = "your_huggingface_api_token" # Replace with your Hugging Face API token
|
15 |
|
16 |
+
# Validate API token and log in to Hugging Face Hub
|
17 |
+
if HUGGINGFACE_API_TOKEN == "your_huggingface_api_token":
|
18 |
+
logger.error("Please replace 'your_huggingface_api_token' with a valid Hugging Face API token from https://huggingface.co/settings/tokens")
|
19 |
+
raise ValueError("Invalid Hugging Face API token. Please set a valid token.")
|
20 |
+
try:
|
21 |
+
login(token=HUGGINGFACE_API_TOKEN)
|
22 |
+
logger.info("Successfully logged in to Hugging Face Hub")
|
23 |
+
except Exception as e:
|
24 |
+
logger.error(f"Failed to log in to Hugging Face Hub: {str(e)}")
|
25 |
+
raise
|
26 |
+
|
27 |
# Initialize Hugging Face Whisper model for speech-to-text (multilingual support)
|
28 |
+
try:
|
29 |
+
whisper_pipeline = pipeline(
|
30 |
+
"automatic-speech-recognition",
|
31 |
+
model="openai/whisper-tiny",
|
32 |
+
token=HUGGINGFACE_API_TOKEN,
|
33 |
+
device=-1 # Use CPU if GPU unavailable
|
34 |
+
)
|
35 |
+
logger.info("Whisper model initialized successfully")
|
36 |
+
except Exception as e:
|
37 |
+
logger.error(f"Failed to initialize Whisper model: {str(e)}")
|
38 |
+
raise
|
39 |
|
40 |
# Initialize Hugging Face text generation model for chatbot
|
41 |
+
try:
|
42 |
+
text_generation_pipeline = pipeline(
|
43 |
+
"text2text-generation",
|
44 |
+
model="google/flan-t5-small",
|
45 |
+
token=HUGGINGFACE_API_TOKEN,
|
46 |
+
device=-1 # Use CPU if GPU unavailable
|
47 |
+
)
|
48 |
+
logger.info("Text generation model initialized successfully")
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Failed to initialize text generation model: {str(e)}")
|
51 |
+
raise
|
52 |
|
53 |
# Define chatbot knowledge base
|
54 |
base_info = """
|
|
|
120 |
|
121 |
# Function to get AI response using text generation model
|
122 |
def get_llm_response(message):
|
123 |
+
try:
|
124 |
+
full_context = "\n".join(context) + f"\nUser: {message}\nMindCare:"
|
125 |
+
response = text_generation_pipeline(full_context, max_length=500, num_return_sequences=1)[0]['generated_text']
|
126 |
+
return response
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Error generating response: {str(e)}")
|
129 |
+
return f"Error generating response: {str(e)}"
|
130 |
|
131 |
# Function to process voice input and convert to text
|
132 |
def process_voice_input(audio_file, language="en"):
|
|
|
143 |
generate_kwargs={"language": language_map.get(language, "english")})
|
144 |
return transcription["text"]
|
145 |
except Exception as e:
|
146 |
+
logger.error(f"Error processing audio: {str(e)}")
|
147 |
return f"Error processing audio: {str(e)}"
|
148 |
|
149 |
# Define chatbot response function with voice and text input
|
150 |
def bot(message=None, audio_file=None, language="en", history=None):
|
151 |
+
try:
|
152 |
+
if audio_file:
|
153 |
+
# Process voice input if provided
|
154 |
+
message = process_voice_input(audio_file, language)
|
155 |
+
|
156 |
+
if not message:
|
157 |
+
return "No input provided. Please type a message or upload an audio file.", None
|
158 |
+
|
159 |
+
# Get response from text generation model
|
160 |
+
response = get_llm_response(message)
|
161 |
+
|
162 |
+
# Convert the response to speech using gTTS
|
163 |
+
tts = gTTS(text=response, lang=language, slow=False)
|
164 |
+
|
165 |
+
# Save the audio file in a temporary directory
|
166 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
167 |
+
audio_path = temp_audio.name
|
168 |
+
tts.save(audio_path)
|
169 |
+
|
170 |
+
return response, audio_path
|
171 |
+
except Exception as e:
|
172 |
+
logger.error(f"Error in bot function: {str(e)}")
|
173 |
+
return f"Error: {str(e)}", None
|
174 |
|
175 |
# Create Gradio interface with voice and text input
|
176 |
demo = gr.Interface(
|
|
|
189 |
)
|
190 |
|
191 |
# Launch the Gradio app
|
192 |
+
if __name__ == "__main__":
|
193 |
+
try:
|
194 |
+
demo.launch(debug=True, share=True)
|
195 |
+
except Exception as e:
|
196 |
+
logger.error(f"Failed to launch Gradio app: {str(e)}")
|
197 |
+
raise
|