Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,26 @@ from reportlab.lib.pagesizes import letter
|
|
| 7 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 8 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 9 |
from reportlab.lib import colors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Load BLIP model and processor
|
| 12 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
@@ -70,13 +90,41 @@ def save_dpr_to_pdf(dpr_text, filename):
|
|
| 70 |
|
| 71 |
# Build the PDF
|
| 72 |
doc.build(flowables)
|
| 73 |
-
return f"PDF saved successfully as {filename}"
|
| 74 |
except Exception as e:
|
| 75 |
-
return f"Error saving PDF: {str(e)}"
|
| 76 |
|
| 77 |
-
# Function to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def generate_dpr(files):
|
| 79 |
dpr_text = []
|
|
|
|
| 80 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 81 |
|
| 82 |
# Add header to the DPR
|
|
@@ -85,13 +133,14 @@ def generate_dpr(files):
|
|
| 85 |
# Process each uploaded file (image)
|
| 86 |
for file in files:
|
| 87 |
# Open the image from file path
|
| 88 |
-
image = Image.open(file.name)
|
| 89 |
|
| 90 |
if image.mode != "RGB":
|
| 91 |
image = image.convert("RGB")
|
| 92 |
|
| 93 |
# Dynamically generate a caption based on the image
|
| 94 |
caption = generate_captions_from_image(image)
|
|
|
|
| 95 |
|
| 96 |
# Generate DPR section for this image with dynamic caption
|
| 97 |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
|
@@ -104,22 +153,73 @@ def generate_dpr(files):
|
|
| 104 |
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
| 105 |
|
| 106 |
# Save DPR text to PDF
|
| 107 |
-
pdf_result = save_dpr_to_pdf(dpr_output, pdf_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
# Return
|
| 110 |
-
return
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
|
| 113 |
iface = gr.Interface(
|
| 114 |
fn=generate_dpr,
|
| 115 |
-
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
|
| 116 |
outputs=[
|
| 117 |
-
gr.Textbox(label="Daily Progress Report"),
|
| 118 |
-
gr.File(label="Download PDF")
|
| 119 |
],
|
| 120 |
title="Daily Progress Report Generator",
|
| 121 |
-
description="Upload up to 10 site photos. The AI model will
|
| 122 |
-
allow_flagging="never"
|
| 123 |
)
|
| 124 |
|
| 125 |
if __name__ == "__main__":
|
|
|
|
| 7 |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
|
| 8 |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 9 |
from reportlab.lib import colors
|
| 10 |
+
from simple_salesforce import Salesforce
|
| 11 |
+
import os
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
import base64
|
| 14 |
+
import io
|
| 15 |
+
|
| 16 |
+
# Load environment variables from .env file
|
| 17 |
+
load_dotenv()
|
| 18 |
+
|
| 19 |
+
# Salesforce credentials
|
| 20 |
+
SF_USERNAME = os.getenv('SF_USERNAME')
|
| 21 |
+
SF_PASSWORD = os.getenv('SF_PASSWORD')
|
| 22 |
+
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
|
| 23 |
+
|
| 24 |
+
# Initialize Salesforce connection
|
| 25 |
+
try:
|
| 26 |
+
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
|
| 27 |
+
except Exception as e:
|
| 28 |
+
sf = None
|
| 29 |
+
print(f"Failed to connect to Salesforce: {str(e)}")
|
| 30 |
|
| 31 |
# Load BLIP model and processor
|
| 32 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
|
|
|
| 90 |
|
| 91 |
# Build the PDF
|
| 92 |
doc.build(flowables)
|
| 93 |
+
return f"PDF saved successfully as {filename}", filename
|
| 94 |
except Exception as e:
|
| 95 |
+
return f"Error saving PDF: {str(e)}", None
|
| 96 |
|
| 97 |
+
# Function to upload a file to Salesforce as ContentVersion
|
| 98 |
+
def upload_file_to_salesforce(file_path, filename, sf_connection, field_name):
|
| 99 |
+
try:
|
| 100 |
+
# Read file content and encode in base64
|
| 101 |
+
with open(file_path, 'rb') as f:
|
| 102 |
+
file_content = f.read()
|
| 103 |
+
file_content_b64 = base64.b64encode(file_content).decode('utf-8')
|
| 104 |
+
|
| 105 |
+
# Create ContentVersion
|
| 106 |
+
content_version = sf_connection.ContentVersion.create({
|
| 107 |
+
'Title': filename,
|
| 108 |
+
'PathOnClient': filename,
|
| 109 |
+
'VersionData': file_content_b64,
|
| 110 |
+
'Description': f'Uploaded for {field_name}'
|
| 111 |
+
})
|
| 112 |
+
|
| 113 |
+
# Get ContentDocumentId
|
| 114 |
+
content_version_id = content_version['id']
|
| 115 |
+
content_document = sf_connection.query(
|
| 116 |
+
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
|
| 117 |
+
)
|
| 118 |
+
content_document_id = content_document['records'][0]['ContentDocumentId']
|
| 119 |
+
|
| 120 |
+
return content_document_id, f"File {filename} uploaded successfully for {field_name}"
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return None, f"Error uploading {filename} to Salesforce for {field_name}: {str(e)}"
|
| 123 |
+
|
| 124 |
+
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
|
| 125 |
def generate_dpr(files):
|
| 126 |
dpr_text = []
|
| 127 |
+
captions = []
|
| 128 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 129 |
|
| 130 |
# Add header to the DPR
|
|
|
|
| 133 |
# Process each uploaded file (image)
|
| 134 |
for file in files:
|
| 135 |
# Open the image from file path
|
| 136 |
+
image = Image.open(file.name)
|
| 137 |
|
| 138 |
if image.mode != "RGB":
|
| 139 |
image = image.convert("RGB")
|
| 140 |
|
| 141 |
# Dynamically generate a caption based on the image
|
| 142 |
caption = generate_captions_from_image(image)
|
| 143 |
+
captions.append(caption)
|
| 144 |
|
| 145 |
# Generate DPR section for this image with dynamic caption
|
| 146 |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
|
|
|
| 153 |
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
|
| 154 |
|
| 155 |
# Save DPR text to PDF
|
| 156 |
+
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, pdf_filename)
|
| 157 |
+
|
| 158 |
+
# Salesforce upload
|
| 159 |
+
salesforce_result = ""
|
| 160 |
+
if sf and pdf_filepath:
|
| 161 |
+
try:
|
| 162 |
+
# Create Daily_Progress_Reports__c record
|
| 163 |
+
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
|
| 164 |
+
dpr_record = sf.Daily_Progress_Reports__c.create({
|
| 165 |
+
'Report_Date__c': current_time,
|
| 166 |
+
'Report_Description__c': report_description
|
| 167 |
+
})
|
| 168 |
+
dpr_record_id = dpr_record['id']
|
| 169 |
+
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
|
| 170 |
+
|
| 171 |
+
# Upload PDF to Salesforce for Report_PDF__c
|
| 172 |
+
pdf_content_document_id, pdf_upload_result = upload_file_to_salesforce(
|
| 173 |
+
pdf_filepath, pdf_filename, sf, 'Report_PDF__c'
|
| 174 |
+
)
|
| 175 |
+
salesforce_result += pdf_upload_result + "\n"
|
| 176 |
+
|
| 177 |
+
# Link PDF to DPR record
|
| 178 |
+
if pdf_content_document_id:
|
| 179 |
+
sf.ContentDocumentLink.create({
|
| 180 |
+
'ContentDocumentId': pdf_content_document_id,
|
| 181 |
+
'LinkedEntityId': dpr_record_id,
|
| 182 |
+
'ShareType': 'V'
|
| 183 |
+
})
|
| 184 |
+
|
| 185 |
+
# Upload images to Salesforce for Site_Images__c
|
| 186 |
+
for file in files:
|
| 187 |
+
image_filename = os.path.basename(file.name)
|
| 188 |
+
image_content_document_id, image_upload_result = upload_file_to_salesforce(
|
| 189 |
+
file.name, image_filename, sf, 'Site_Images__c'
|
| 190 |
+
)
|
| 191 |
+
salesforce_result += image_upload_result + "\n"
|
| 192 |
+
|
| 193 |
+
# Link image to DPR record
|
| 194 |
+
if image_content_document_id:
|
| 195 |
+
sf.ContentDocumentLink.create({
|
| 196 |
+
'ContentDocumentId': image_content_document_id,
|
| 197 |
+
'LinkedEntityId': dpr_record_id,
|
| 198 |
+
'ShareType': 'V'
|
| 199 |
+
})
|
| 200 |
+
|
| 201 |
+
except Exception as e:
|
| 202 |
+
salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
|
| 203 |
+
else:
|
| 204 |
+
salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
|
| 205 |
|
| 206 |
+
# Return DPR text, PDF file, and Salesforce upload status
|
| 207 |
+
return (
|
| 208 |
+
dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
|
| 209 |
+
pdf_filepath
|
| 210 |
+
)
|
| 211 |
|
| 212 |
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
|
| 213 |
iface = gr.Interface(
|
| 214 |
fn=generate_dpr,
|
| 215 |
+
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
|
| 216 |
outputs=[
|
| 217 |
+
gr.Textbox(label="Daily Progress Report"),
|
| 218 |
+
gr.File(label="Download PDF")
|
| 219 |
],
|
| 220 |
title="Daily Progress Report Generator",
|
| 221 |
+
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF to Report_PDF__c and images to Site_Images__c in Salesforce under Daily_Progress_Reports__c. Download the PDF locally if needed.",
|
| 222 |
+
allow_flagging="never"
|
| 223 |
)
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|