DPR-5gee / app.py
Rammohan0504's picture
Update app.py
0efb9f9 verified
raw
history blame
11.1 kB
from fastapi import FastAPI, File, UploadFile
import requests
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
import gradio as gr
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
import os
from dotenv import load_dotenv
import base64
import io
import concurrent.futures
# Load environment variables from .env file
load_dotenv()
app = FastAPI()
# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
# Initialize Salesforce connection
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
sf = None
print(f"Failed to connect to Salesforce: {str(e)}")
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# Function to generate captions dynamically based on image content
def generate_captions_from_image(image):
if image.mode != "RGB":
image = image.convert("RGB")
# Resize image for faster processing
image = image.resize((640, 640))
# Preprocess the image and generate a caption
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_new_tokens=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# FastAPI endpoint to handle image upload and forward it to Hugging Face API for caption generation
HUGGING_FACE_ENDPOINT = 'https://huggingface.co/spaces/Rammohan0504/DPR-4/predict'
@app.post("/predict/")
async def predict(image: UploadFile = File(...)):
try:
# Read the image from the request
image_bytes = await image.read()
image = Image.open(io.BytesIO(image_bytes))
# Forward the image to Hugging Face endpoint
response = forward_image_to_huggingface(image)
# Check the response from Hugging Face
if response.status_code == 200:
result = response.json()
caption = result.get("caption", "No caption found.")
return {"caption": caption}
else:
return {"error": f"Failed to get prediction from Hugging Face Space. Status code: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
# Function to forward the image to Hugging Face API
def forward_image_to_huggingface(image: Image):
if image.mode != "RGB":
image = image.convert("RGB")
# Resize image for faster processing
image = image.resize((640, 640))
# Convert image to bytes for API request
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='JPEG')
img_byte_arr = img_byte_arr.getvalue()
# Create the payload to send to Hugging Face (it expects a file)
files = {'file': ('image.jpg', img_byte_arr, 'image/jpeg')}
# Make the POST request to Hugging Face Space
response = requests.post(HUGGING_FACE_ENDPOINT, files=files)
return response
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
dpr_text = []
captions = []
image_paths = []
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add header to the DPR
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
# Process images in parallel for faster performance
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
for i, file in enumerate(files):
caption = results[i]
captions.append(caption)
# Generate DPR section for this image with dynamic caption
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
dpr_text.append(dpr_section)
# Save image path for embedding in the report
image_paths.append(file.name)
# Combine DPR text (no redundant description here)
dpr_output = "\n".join(dpr_text)
# Generate PDF filename with timestamp
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
# Save DPR text to PDF
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
# Salesforce upload
salesforce_result = ""
pdf_content_document_id = None
pdf_url = None
image_content_document_ids = []
if sf and pdf_filepath:
try:
# Create Daily_Progress_Reports__c record
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars
dpr_record = sf.Daily_Progress_Reports__c.create({
'Detected_Activities__c': report_description # Store in Detected_Activities__c field
})
dpr_record_id = dpr_record['id']
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
# Upload PDF to Salesforce
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
pdf_filepath, pdf_filename, sf, "pdf"
)
salesforce_result += pdf_upload_result + "\n"
# Link PDF to DPR record
if pdf_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': pdf_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
# Update the DPR record with the PDF URL
if pdf_url:
sf.Daily_Progress_Reports__c.update(dpr_record_id, {
'PDF_URL__c': pdf_url # Storing the PDF URL correctly
})
salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
# Upload images to Salesforce and create Site_Images__c records
for file in files:
image_filename = os.path.basename(file.name)
image_content_document_id, image_upload_result = upload_file_to_salesforce(
file.name, image_filename, sf, "image"
)
if image_content_document_id:
image_content_document_ids.append(image_content_document_id)
# Create Site_Images__c record and link to DPR
site_image_record = sf.Site_Images__c.create({
'Image__c': image_content_document_id,
'Related_Report__c': dpr_record_id # Link image to DPR record
})
salesforce_result += image_upload_result + "\n"
# Link image to DPR record
if image_content_document_id:
sf.ContentDocumentLink.create({
'ContentDocumentId': image_content_document_id,
'LinkedEntityId': dpr_record_id,
'ShareType': 'V'
})
except Exception as e:
salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
else:
salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
# Return DPR text, PDF file, and Salesforce upload status
return (
dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
pdf_filepath
)
# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
try:
# Create a PDF document
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
# Define custom styles
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1, # Center
spaceAfter=20,
textColor=colors.black,
fontName='Helvetica-Bold'
)
body_style = ParagraphStyle(
name='Body',
fontSize=12,
leading=14,
spaceAfter=10,
textColor=colors.black,
fontName='Helvetica'
)
# Build the PDF content
flowables = []
# Add title
flowables.append(Paragraph("Daily Progress Report", title_style))
# Split DPR text into lines and add as paragraphs (excluding descriptions for images)
for line in dpr_text.split('\n'):
# Replace problematic characters for PDF
line = line.replace('\u2019', "'").replace('\u2018', "'")
if line.strip():
flowables.append(Paragraph(line, body_style))
else:
flowables.append(Spacer(1, 12))
# Add images and captions in the correct order (no need to add description to dpr_text again)
for img_path, caption in zip(image_paths, captions):
try:
# Add image first
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed
flowables.append(img)
# Add description below the image
description = f"Description: {caption}"
flowables.append(Paragraph(description, body_style))
flowables.append(Spacer(1, 12)) # Add some space between images
except Exception as e:
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
# Build the PDF
doc.build(flowables)
return f"PDF saved successfully as {filename}", filename
except Exception as e:
return f"Error saving PDF: {str(e)}", None
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
outputs=[
gr.Textbox(label="Daily Progress Report"),
gr.File(label="Download PDF")
],
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()