import streamlit as st from langchain.llms import HuggingFaceHub # Function to return the response def load_answer(question): if not question: return "Please ask a question." # Initialize the Hugging Face model llm = HuggingFaceHub(repo_id="google/flan-t5-large", model_kwargs={"temperature": 0.7}) # Get response from the model answer = llm(question) return answer # App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") # Gets the user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text user_input = get_text() submit = st.button('Generate') # If the generate button is clicked if submit: if user_input: response = load_answer(user_input) st.subheader("Answer:") st.write(response) else: st.error("Please enter a question!")