Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +80 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
from transformers import pipeline, set_seed
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# TTI Class Definition
|
8 |
+
class TTI:
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
seed = 42
|
11 |
+
generator = torch.Generator(device).manual_seed(seed)
|
12 |
+
image_gen_steps = 35
|
13 |
+
image_gen_size = (400, 400)
|
14 |
+
image_gen_guidence_scale = 9
|
15 |
+
image_gen_model_id = "stabilityai/stable-diffusion-2"
|
16 |
+
prompt_gen_model_id = "gpt2"
|
17 |
+
|
18 |
+
# Load Stable Diffusion Model
|
19 |
+
@st.cache_resource
|
20 |
+
def load_image_gen_model():
|
21 |
+
model = StableDiffusionPipeline.from_pretrained(
|
22 |
+
TTI.image_gen_model_id,
|
23 |
+
torch_dtype=torch.float16,
|
24 |
+
revision="fp16"
|
25 |
+
)
|
26 |
+
return model.to(TTI.device)
|
27 |
+
|
28 |
+
image_gen_model = load_image_gen_model()
|
29 |
+
|
30 |
+
# Function to Generate Images
|
31 |
+
def generate_image(prompt, model):
|
32 |
+
image = model(
|
33 |
+
prompt,
|
34 |
+
num_inference_steps=TTI.image_gen_steps,
|
35 |
+
generator=TTI.generator,
|
36 |
+
guidance_scale=TTI.image_gen_guidence_scale
|
37 |
+
).images[0]
|
38 |
+
# Resize the image to the specified size
|
39 |
+
image = image.resize(TTI.image_gen_size, Image.ANTIALIAS)
|
40 |
+
return image
|
41 |
+
|
42 |
+
# Streamlit UI
|
43 |
+
st.title("Text-to-Image Generator")
|
44 |
+
st.write("Generate images from text prompts using Stable Diffusion.")
|
45 |
+
|
46 |
+
# User Input: Prompt
|
47 |
+
prompt = st.text_input("Enter a text prompt", value="A monkey on a tree")
|
48 |
+
|
49 |
+
# User Input: Inference Steps
|
50 |
+
image_gen_steps = st.slider(
|
51 |
+
"Number of inference steps (Higher = Better quality but slower)",
|
52 |
+
min_value=10,
|
53 |
+
max_value=100,
|
54 |
+
value=TTI.image_gen_steps,
|
55 |
+
step=5
|
56 |
+
)
|
57 |
+
|
58 |
+
# User Input: Guidance Scale
|
59 |
+
guidance_scale = st.slider(
|
60 |
+
"Guidance scale (Higher = Closer to prompt, but less creative)",
|
61 |
+
min_value=1.0,
|
62 |
+
max_value=20.0,
|
63 |
+
value=float(TTI.image_gen_guidence_scale), # Convert the value to float
|
64 |
+
step=0.5
|
65 |
+
)
|
66 |
+
|
67 |
+
# User Input: Image Size
|
68 |
+
image_width = st.number_input("Image Width", min_value=64, max_value=1024, value=TTI.image_gen_size[0], step=64)
|
69 |
+
image_height = st.number_input("Image Height", min_value=64, max_value=1024, value=TTI.image_gen_size[1], step=64)
|
70 |
+
|
71 |
+
# Generate Image Button
|
72 |
+
if st.button("Generate Image"):
|
73 |
+
TTI.image_gen_steps = image_gen_steps
|
74 |
+
TTI.image_gen_guidence_scale = guidance_scale
|
75 |
+
TTI.image_gen_size = (image_width, image_height)
|
76 |
+
with st.spinner("Generating image..."):
|
77 |
+
image = generate_image(prompt, image_gen_model)
|
78 |
+
st.image(image, caption=f"Generated Image for Prompt: '{prompt}'", use_column_width=True)
|
79 |
+
|
80 |
+
st.write("Adjust parameters to customize the image generation!")
|
requirements.txt
ADDED
File without changes
|