Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,10 @@ import torch
|
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
from torchvision import transforms
|
7 |
-
from cloth_segmentation.networks.u2net import U2NET
|
8 |
|
9 |
# Load U²-Net model
|
10 |
-
model_path = "cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
12 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
13 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
@@ -15,14 +15,25 @@ model.load_state_dict(state_dict)
|
|
15 |
model.eval()
|
16 |
|
17 |
def refine_mask(mask):
|
18 |
-
"""
|
19 |
-
|
20 |
-
|
21 |
-
mask = cv2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
return mask
|
23 |
|
24 |
def segment_dress(image_np):
|
25 |
-
"""
|
26 |
transform_pipeline = transforms.Compose([
|
27 |
transforms.ToTensor(),
|
28 |
transforms.Resize((320, 320))
|
@@ -34,70 +45,67 @@ def segment_dress(image_np):
|
|
34 |
with torch.no_grad():
|
35 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
return refine_mask(dress_mask)
|
42 |
|
43 |
def apply_grabcut(image_np, dress_mask):
|
44 |
-
"""
|
45 |
bgd_model = np.zeros((1, 65), np.float64)
|
46 |
fgd_model = np.zeros((1, 65), np.float64)
|
47 |
|
48 |
mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8')
|
49 |
-
|
50 |
-
# Get bounding box
|
51 |
coords = cv2.findNonZero(dress_mask)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")
|
58 |
return refine_mask(refined_mask)
|
59 |
|
60 |
def recolor_dress(image_np, dress_mask, target_color):
|
61 |
-
"""
|
62 |
-
|
63 |
-
# Convert target color to LAB
|
64 |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
|
65 |
-
|
66 |
-
# Convert image to LAB
|
67 |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
68 |
|
69 |
-
#
|
70 |
dress_pixels = img_lab[dress_mask > 0]
|
71 |
if len(dress_pixels) == 0:
|
72 |
-
return image_np
|
73 |
|
74 |
mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0)
|
75 |
-
|
76 |
-
# Apply LAB shift
|
77 |
a_shift = target_color_lab[1] - mean_A
|
78 |
b_shift = target_color_lab[2] - mean_B
|
|
|
|
|
79 |
img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255)
|
80 |
img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255)
|
81 |
|
82 |
-
#
|
83 |
img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
|
84 |
-
|
85 |
-
|
86 |
-
lightness_mask = (img_lab[..., 0] / 255.0)
|
87 |
-
feathered_mask = cv2.GaussianBlur(dress_mask, (15, 15), 5)
|
88 |
adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8)
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
|
93 |
-
return img_final
|
94 |
|
95 |
def change_dress_color(img, color):
|
96 |
-
"""Main function
|
97 |
if img is None:
|
98 |
return None
|
99 |
|
100 |
-
# Convert color name to BGR using a safer method
|
101 |
color_map = {
|
102 |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0),
|
103 |
"Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255),
|
@@ -105,45 +113,42 @@ def change_dress_color(img, color):
|
|
105 |
"Black": (0, 0, 0)
|
106 |
}
|
107 |
|
108 |
-
# Safely get color with fallback to red
|
109 |
new_color_bgr = color_map.get(color, (0, 0, 255))
|
110 |
-
|
111 |
img_np = np.array(img)
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
return Image.fromarray(img_recolored)
|
126 |
|
127 |
-
#
|
128 |
with gr.Blocks() as demo:
|
129 |
-
gr.Markdown("# AI
|
130 |
-
gr.Markdown("Upload
|
131 |
|
132 |
with gr.Row():
|
133 |
with gr.Column():
|
134 |
-
input_image = gr.Image(type="pil", label="
|
135 |
color_choice = gr.Dropdown(
|
136 |
choices=["Red", "Blue", "Green", "Yellow", "Purple",
|
137 |
"Orange", "Cyan", "Magenta", "White", "Black"],
|
138 |
value="Red",
|
139 |
-
label="
|
140 |
)
|
141 |
-
|
142 |
|
143 |
with gr.Column():
|
144 |
output_image = gr.Image(type="pil", label="Result")
|
145 |
|
146 |
-
|
147 |
fn=change_dress_color,
|
148 |
inputs=[input_image, color_choice],
|
149 |
outputs=output_image
|
|
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
from torchvision import transforms
|
7 |
+
from cloth_segmentation.networks.u2net import U2NET
|
8 |
|
9 |
# Load U²-Net model
|
10 |
+
model_path = "/kaggle/input/tygsgg/cloth_segmentation/networks/u2net.pth"
|
11 |
model = U2NET(3, 1)
|
12 |
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
13 |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
|
|
15 |
model.eval()
|
16 |
|
17 |
def refine_mask(mask):
|
18 |
+
"""Enhanced mask refinement with erosion and morphological operations"""
|
19 |
+
# First closing to fill small holes
|
20 |
+
close_kernel = np.ones((5, 5), np.uint8)
|
21 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
|
22 |
+
|
23 |
+
# Erosion to remove small protrusions and extra areas
|
24 |
+
erode_kernel = np.ones((3, 3), np.uint8)
|
25 |
+
mask = cv2.erode(mask, erode_kernel, iterations=1)
|
26 |
+
|
27 |
+
# Second closing to refine edges after erosion
|
28 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
|
29 |
+
|
30 |
+
# Final blur to smooth edges while preserving shape
|
31 |
+
mask = cv2.GaussianBlur(mask, (5, 5), 1.5)
|
32 |
+
|
33 |
return mask
|
34 |
|
35 |
def segment_dress(image_np):
|
36 |
+
"""Improved dress segmentation with adaptive thresholding"""
|
37 |
transform_pipeline = transforms.Compose([
|
38 |
transforms.ToTensor(),
|
39 |
transforms.Resize((320, 320))
|
|
|
45 |
with torch.no_grad():
|
46 |
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
|
47 |
|
48 |
+
# Adaptive threshold calculation
|
49 |
+
output = (output - output.min()) / (output.max() - output.min() + 1e-8)
|
50 |
+
adaptive_thresh = np.mean(output) + 0.2 # Increased threshold for tighter mask
|
51 |
+
dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255
|
52 |
+
|
53 |
+
# Preserve hard edges during resize
|
54 |
+
dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]),
|
55 |
+
interpolation=cv2.INTER_NEAREST)
|
56 |
|
57 |
return refine_mask(dress_mask)
|
58 |
|
59 |
def apply_grabcut(image_np, dress_mask):
|
60 |
+
"""Mask refinement using GrabCut"""
|
61 |
bgd_model = np.zeros((1, 65), np.float64)
|
62 |
fgd_model = np.zeros((1, 65), np.float64)
|
63 |
|
64 |
mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8')
|
65 |
+
|
66 |
+
# Get bounding box coordinates
|
67 |
coords = cv2.findNonZero(dress_mask)
|
68 |
+
if coords is not None:
|
69 |
+
x, y, w, h = cv2.boundingRect(coords)
|
70 |
+
rect = (x, y, w, h)
|
71 |
+
cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK)
|
72 |
+
|
73 |
refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")
|
74 |
return refine_mask(refined_mask)
|
75 |
|
76 |
def recolor_dress(image_np, dress_mask, target_color):
|
77 |
+
"""Color transformation with improved blending"""
|
78 |
+
# Convert colors to LAB space
|
|
|
79 |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
|
|
|
|
|
80 |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
|
81 |
|
82 |
+
# Calculate color shifts
|
83 |
dress_pixels = img_lab[dress_mask > 0]
|
84 |
if len(dress_pixels) == 0:
|
85 |
+
return image_np
|
86 |
|
87 |
mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0)
|
|
|
|
|
88 |
a_shift = target_color_lab[1] - mean_A
|
89 |
b_shift = target_color_lab[2] - mean_B
|
90 |
+
|
91 |
+
# Apply color transformation
|
92 |
img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255)
|
93 |
img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255)
|
94 |
|
95 |
+
# Create adaptive blending mask
|
96 |
img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
|
97 |
+
feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7)
|
98 |
+
lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7
|
|
|
|
|
99 |
adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8)
|
100 |
|
101 |
+
# Smooth blending
|
102 |
+
return (image_np * (1 - adaptive_feather[..., None]/255) + img_recolored * (adaptive_feather[..., None]/255)).astype(np.uint8)
|
|
|
|
|
103 |
|
104 |
def change_dress_color(img, color):
|
105 |
+
"""Main processing function with error handling"""
|
106 |
if img is None:
|
107 |
return None
|
108 |
|
|
|
109 |
color_map = {
|
110 |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0),
|
111 |
"Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255),
|
|
|
113 |
"Black": (0, 0, 0)
|
114 |
}
|
115 |
|
|
|
116 |
new_color_bgr = color_map.get(color, (0, 0, 255))
|
|
|
117 |
img_np = np.array(img)
|
118 |
|
119 |
+
try:
|
120 |
+
dress_mask = segment_dress(img_np)
|
121 |
+
if np.sum(dress_mask) < 1000: # Minimum mask area threshold
|
122 |
+
return img
|
123 |
+
|
124 |
+
dress_mask = apply_grabcut(img_np, dress_mask)
|
125 |
+
img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr)
|
126 |
+
return Image.fromarray(img_recolored)
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Error processing image: {str(e)}")
|
130 |
+
return img
|
|
|
131 |
|
132 |
+
# Gradio Interface
|
133 |
with gr.Blocks() as demo:
|
134 |
+
gr.Markdown("# AI Dress Color Changer")
|
135 |
+
gr.Markdown("Upload a dress image and select a new color for realistic recoloring")
|
136 |
|
137 |
with gr.Row():
|
138 |
with gr.Column():
|
139 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
140 |
color_choice = gr.Dropdown(
|
141 |
choices=["Red", "Blue", "Green", "Yellow", "Purple",
|
142 |
"Orange", "Cyan", "Magenta", "White", "Black"],
|
143 |
value="Red",
|
144 |
+
label="Select New Color"
|
145 |
)
|
146 |
+
process_btn = gr.Button("Recolor Dress")
|
147 |
|
148 |
with gr.Column():
|
149 |
output_image = gr.Image(type="pil", label="Result")
|
150 |
|
151 |
+
process_btn.click(
|
152 |
fn=change_dress_color,
|
153 |
inputs=[input_image, color_choice],
|
154 |
outputs=output_image
|