Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
from cloth_segmentation.networks.u2net import U2NET | |
# Load U²-Net model | |
model_path = "cloth_segmentation/networks/u2net.pth" | |
model = U2NET(3, 1) | |
state_dict = torch.load(model_path, map_location=torch.device('cpu')) | |
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} | |
model.load_state_dict(state_dict) | |
model.eval() | |
def refine_mask(mask): | |
"""Enhanced mask refinement with erosion and morphological operations""" | |
# First closing to fill small holes | |
close_kernel = np.ones((5, 5), np.uint8) | |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) | |
# Erosion to remove small protrusions and extra areas | |
erode_kernel = np.ones((3, 3), np.uint8) | |
mask = cv2.erode(mask, erode_kernel, iterations=1) | |
# Second closing to refine edges after erosion | |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel) | |
# Final blur to smooth edges while preserving shape | |
mask = cv2.GaussianBlur(mask, (5, 5), 1.5) | |
return mask | |
def segment_dress(image_np): | |
"""Improved dress segmentation with adaptive thresholding""" | |
transform_pipeline = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Resize((320, 320)) | |
]) | |
image = Image.fromarray(image_np).convert("RGB") | |
input_tensor = transform_pipeline(image).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor)[0][0].squeeze().cpu().numpy() | |
# Adaptive threshold calculation | |
output = (output - output.min()) / (output.max() - output.min() + 1e-8) | |
adaptive_thresh = np.mean(output) + 0.2 # Increased threshold for tighter mask | |
dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255 | |
# Preserve hard edges during resize | |
dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]), | |
interpolation=cv2.INTER_NEAREST) | |
return refine_mask(dress_mask) | |
def apply_grabcut(image_np, dress_mask): | |
"""Mask refinement using GrabCut""" | |
bgd_model = np.zeros((1, 65), np.float64) | |
fgd_model = np.zeros((1, 65), np.float64) | |
mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8') | |
# Get bounding box coordinates | |
coords = cv2.findNonZero(dress_mask) | |
if coords is not None: | |
x, y, w, h = cv2.boundingRect(coords) | |
rect = (x, y, w, h) | |
cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK) | |
refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8") | |
return refine_mask(refined_mask) | |
def recolor_dress(image_np, dress_mask, target_color): | |
"""Color transformation with improved blending""" | |
# Convert colors to LAB space | |
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0] | |
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB) | |
# Calculate color shifts | |
dress_pixels = img_lab[dress_mask > 0] | |
if len(dress_pixels) == 0: | |
return image_np | |
mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0) | |
a_shift = target_color_lab[1] - mean_A | |
b_shift = target_color_lab[2] - mean_B | |
# Apply color transformation | |
img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255) | |
img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255) | |
# Create adaptive blending mask | |
img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB) | |
feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7) | |
lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7 | |
adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8) | |
# Smooth blending | |
return (image_np * (1 - adaptive_feather[..., None]/255) + img_recolored * (adaptive_feather[..., None]/255)).astype(np.uint8) | |
def change_dress_color(img, color): | |
"""Main processing function with error handling""" | |
if img is None: | |
return None | |
color_map = { | |
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0), | |
"Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255), | |
"Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255), | |
"Black": (0, 0, 0) | |
} | |
new_color_bgr = color_map.get(color, (0, 0, 255)) | |
img_np = np.array(img) | |
try: | |
dress_mask = segment_dress(img_np) | |
if np.sum(dress_mask) < 1000: # Minimum mask area threshold | |
return img | |
dress_mask = apply_grabcut(img_np, dress_mask) | |
img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr) | |
return Image.fromarray(img_recolored) | |
except Exception as e: | |
print(f"Error processing image: {str(e)}") | |
return img | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# AI Dress Color Changer") | |
gr.Markdown("Upload a dress image and select a new color for realistic recoloring") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
color_choice = gr.Dropdown( | |
choices=["Red", "Blue", "Green", "Yellow", "Purple", | |
"Orange", "Cyan", "Magenta", "White", "Black"], | |
value="Red", | |
label="Select New Color" | |
) | |
process_btn = gr.Button("Recolor Dress") | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Result") | |
process_btn.click( | |
fn=change_dress_color, | |
inputs=[input_image, color_choice], | |
outputs=output_image | |
) | |
if __name__ == "__main__": | |
demo.launch() |