detecting_dress / app.py
gaur3009's picture
Update app.py
6e5e70e verified
import gradio as gr
import numpy as np
import torch
import cv2
from PIL import Image
from torchvision import transforms
from cloth_segmentation.networks.u2net import U2NET
# Load U²-Net model
model_path = "cloth_segmentation/networks/u2net.pth"
model = U2NET(3, 1)
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
model.eval()
def refine_mask(mask):
"""Enhanced mask refinement with erosion and morphological operations"""
# First closing to fill small holes
close_kernel = np.ones((5, 5), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
# Erosion to remove small protrusions and extra areas
erode_kernel = np.ones((3, 3), np.uint8)
mask = cv2.erode(mask, erode_kernel, iterations=1)
# Second closing to refine edges after erosion
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, close_kernel)
# Final blur to smooth edges while preserving shape
mask = cv2.GaussianBlur(mask, (5, 5), 1.5)
return mask
def segment_dress(image_np):
"""Improved dress segmentation with adaptive thresholding"""
transform_pipeline = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((320, 320))
])
image = Image.fromarray(image_np).convert("RGB")
input_tensor = transform_pipeline(image).unsqueeze(0)
with torch.no_grad():
output = model(input_tensor)[0][0].squeeze().cpu().numpy()
# Adaptive threshold calculation
output = (output - output.min()) / (output.max() - output.min() + 1e-8)
adaptive_thresh = np.mean(output) + 0.2 # Increased threshold for tighter mask
dress_mask = (output > adaptive_thresh).astype(np.uint8) * 255
# Preserve hard edges during resize
dress_mask = cv2.resize(dress_mask, (image_np.shape[1], image_np.shape[0]),
interpolation=cv2.INTER_NEAREST)
return refine_mask(dress_mask)
def apply_grabcut(image_np, dress_mask):
"""Mask refinement using GrabCut"""
bgd_model = np.zeros((1, 65), np.float64)
fgd_model = np.zeros((1, 65), np.float64)
mask = np.where(dress_mask > 0, cv2.GC_PR_FGD, cv2.GC_BGD).astype('uint8')
# Get bounding box coordinates
coords = cv2.findNonZero(dress_mask)
if coords is not None:
x, y, w, h = cv2.boundingRect(coords)
rect = (x, y, w, h)
cv2.grabCut(image_np, mask, rect, bgd_model, fgd_model, 3, cv2.GC_INIT_WITH_MASK)
refined_mask = np.where((mask == cv2.GC_FGD) | (mask == cv2.GC_PR_FGD), 255, 0).astype("uint8")
return refine_mask(refined_mask)
def recolor_dress(image_np, dress_mask, target_color):
"""Color transformation with improved blending"""
# Convert colors to LAB space
target_color_lab = cv2.cvtColor(np.uint8([[target_color]]), cv2.COLOR_BGR2LAB)[0][0]
img_lab = cv2.cvtColor(image_np, cv2.COLOR_RGB2LAB)
# Calculate color shifts
dress_pixels = img_lab[dress_mask > 0]
if len(dress_pixels) == 0:
return image_np
mean_L, mean_A, mean_B = np.mean(dress_pixels, axis=0)
a_shift = target_color_lab[1] - mean_A
b_shift = target_color_lab[2] - mean_B
# Apply color transformation
img_lab[..., 1] = np.clip(img_lab[..., 1] + (dress_mask / 255.0) * a_shift, 0, 255)
img_lab[..., 2] = np.clip(img_lab[..., 2] + (dress_mask / 255.0) * b_shift, 0, 255)
# Create adaptive blending mask
img_recolored = cv2.cvtColor(img_lab.astype(np.uint8), cv2.COLOR_LAB2RGB)
feathered_mask = cv2.GaussianBlur(dress_mask, (21, 21), 7)
lightness_mask = (img_lab[..., 0] / 255.0) ** 0.7
adaptive_feather = (feathered_mask * lightness_mask).astype(np.uint8)
# Smooth blending
return (image_np * (1 - adaptive_feather[..., None]/255) + img_recolored * (adaptive_feather[..., None]/255)).astype(np.uint8)
def change_dress_color(img, color):
"""Main processing function with error handling"""
if img is None:
return None
color_map = {
"Red": (0, 0, 255), "Blue": (255, 0, 0), "Green": (0, 255, 0),
"Yellow": (0, 255, 255), "Purple": (128, 0, 128), "Orange": (0, 165, 255),
"Cyan": (255, 255, 0), "Magenta": (255, 0, 255), "White": (255, 255, 255),
"Black": (0, 0, 0)
}
new_color_bgr = color_map.get(color, (0, 0, 255))
img_np = np.array(img)
try:
dress_mask = segment_dress(img_np)
if np.sum(dress_mask) < 1000: # Minimum mask area threshold
return img
dress_mask = apply_grabcut(img_np, dress_mask)
img_recolored = recolor_dress(img_np, dress_mask, new_color_bgr)
return Image.fromarray(img_recolored)
except Exception as e:
print(f"Error processing image: {str(e)}")
return img
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# AI Dress Color Changer")
gr.Markdown("Upload a dress image and select a new color for realistic recoloring")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
color_choice = gr.Dropdown(
choices=["Red", "Blue", "Green", "Yellow", "Purple",
"Orange", "Cyan", "Magenta", "White", "Black"],
value="Red",
label="Select New Color"
)
process_btn = gr.Button("Recolor Dress")
with gr.Column():
output_image = gr.Image(type="pil", label="Result")
process_btn.click(
fn=change_dress_color,
inputs=[input_image, color_choice],
outputs=output_image
)
if __name__ == "__main__":
demo.launch()