Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline, AutoModelForQuestionAnswering
|
6 |
+
import torch
|
7 |
+
# model_path = "./kaggle-3/working/bert_qa"
|
8 |
+
model_path = "./flan_t5_qa_60"
|
9 |
+
|
10 |
+
tokenizer_new = AutoTokenizer.from_pretrained(model_path)
|
11 |
+
model_new = AutoModelForQuestionAnswering.from_pretrained(model_path)
|
12 |
+
|
13 |
+
def ask(question: str, context: str) -> str:
|
14 |
+
inputs = tokenizer_new(question, context, max_length=384,
|
15 |
+
truncation="only_second", padding="max_length", return_tensors="pt")
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model_new(**inputs)
|
18 |
+
|
19 |
+
answer_start_index = outputs.start_logits.argmax()
|
20 |
+
answer_end_index = outputs.end_logits.argmax()
|
21 |
+
|
22 |
+
predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
23 |
+
answer = tokenizer_new.decode(predict_answer_tokens)
|
24 |
+
return answer
|
25 |
+
return f"Question: '{question}'\nAnswer: {answer}"
|
26 |
+
|
27 |
+
# print(ask('What God created at first', 'Genesis 1:1 In the beginning God created the heaven and the earth.'))
|
28 |
+
# Streamlit App
|
29 |
+
st.set_page_config(page_title="Bible Q&A Bot", page_icon="📖", layout="centered")
|
30 |
+
|
31 |
+
st.title("📖 Bible Q&A Bot")
|
32 |
+
st.markdown("## Ask any question about the Bible and get scripturally grounded answers.")
|
33 |
+
st.write("‼️Only english🇺🇸 language provided‼️")
|
34 |
+
|
35 |
+
|
36 |
+
# User input
|
37 |
+
query = st.text_input("Enter your question:")
|
38 |
+
|
39 |
+
clear_button = st.button("Clear")
|
40 |
+
if clear_button:
|
41 |
+
for key in st.session_state.keys():
|
42 |
+
del st.session_state[key]
|
43 |
+
|
44 |
+
st.markdown('### Choose option to provide context')
|
45 |
+
option = st.radio("Choose how to provide context:", ("Manually", "Select Bible Verse"), label_visibility="collapsed")
|
46 |
+
|
47 |
+
def print_answer(question, context, answer):
|
48 |
+
if context.isascii() and question.isascii():
|
49 |
+
st.markdown("### ❓Question❓")
|
50 |
+
st.write(question)
|
51 |
+
st.markdown("### 📖Context📖")
|
52 |
+
st.write(context)
|
53 |
+
st.markdown("### ✅Answer✅")
|
54 |
+
st.write(answer)
|
55 |
+
else:
|
56 |
+
st.error("Please ensure both the question and context are in English.")
|
57 |
+
|
58 |
+
|
59 |
+
import pandas as pd
|
60 |
+
|
61 |
+
# bible = pd.read_json("bible-dpo.json")
|
62 |
+
|
63 |
+
bible = pd.read_json("hf://datasets/nbeerbower/bible-dpo/bible-dpo.json")
|
64 |
+
|
65 |
+
books = list(bible['book'].unique())
|
66 |
+
v_by_b_c = bible.groupby(by=['book', 'chapter']).size().to_dict()
|
67 |
+
|
68 |
+
if option == "Manually":
|
69 |
+
context = st.text_area("Enter the context (optional):")
|
70 |
+
submit_button = st.button("Get Answer")
|
71 |
+
|
72 |
+
if submit_button and query:
|
73 |
+
with st.spinner("Searching Scripture..."):
|
74 |
+
answer = ask(query, context)
|
75 |
+
|
76 |
+
print_answer(query, context, answer)
|
77 |
+
|
78 |
+
|
79 |
+
elif option == "Select Bible Verse":
|
80 |
+
|
81 |
+
|
82 |
+
book_name = st.selectbox("Select the book name:", [""] + books)
|
83 |
+
|
84 |
+
if book_name:
|
85 |
+
max_chapter = len(bible[bible["book"] == book_name].groupby('chapter'))
|
86 |
+
chapter = st.selectbox("Select the chapter:", [""] + list(range(1, max_chapter + 1)))
|
87 |
+
else:
|
88 |
+
chapter = st.selectbox("Select the chapter:", [""])
|
89 |
+
|
90 |
+
if chapter:
|
91 |
+
max_verse = v_by_b_c.get((book_name, int(chapter)), 0)
|
92 |
+
verse = st.selectbox("Enter the verse:", [""] + list(range(1, max_verse + 1)))
|
93 |
+
else:
|
94 |
+
verse = st.selectbox("Enter the verse:", [""])
|
95 |
+
|
96 |
+
fetch_context_button = st.button("Fetch Verse")
|
97 |
+
|
98 |
+
if query and fetch_context_button and book_name and chapter and verse:
|
99 |
+
context = bible[
|
100 |
+
(bible["book"] == book_name) &
|
101 |
+
(bible['chapter'] == chapter) &
|
102 |
+
(bible['verse'] == verse)
|
103 |
+
]['text'].values[0]
|
104 |
+
with st.spinner("Searching Scripture..."):
|
105 |
+
answer = ask(query, context)
|
106 |
+
|
107 |
+
print_answer(query, context, answer)
|