import gradio as gr from transformers import AutoModel import torch # Load the model model = AutoModel.from_pretrained("huggingface/autoformer-tourism-monthly") def forecast(month: str): # Simulated input tensor — replace with real preprocessing if available dummy_input = torch.rand(1, 36, 1) # e.g. 36 months of past data output = model(dummy_input) # Simulate response (actual model output may vary depending on structure) prediction = output.last_hidden_state.mean().item() return f"Predicted tourism for {month}: {round(prediction * 1_000_000, 2)} visitors" gr.Interface( fn=forecast, inputs=gr.Textbox(label="Enter Month (e.g. Jan 2023)"), outputs=gr.Textbox(label="Tourism Forecast"), title="AI Tourism Predictor", description="Predict future tourism stats using Autoformer model." ).launch()