Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Pratik Bhavsar
commited on
Commit
·
c411387
1
Parent(s):
5f94245
cleaned up v1
Browse files- app.py +0 -26
- data_loader.py +2 -2
- results.csv → results_v1.csv +0 -0
- tabs/data_exploration.py +0 -810
- tabs/leaderboard.py +1 -1
app.py
CHANGED
|
@@ -14,8 +14,6 @@ from data_loader import (
|
|
| 14 |
SCORES,
|
| 15 |
)
|
| 16 |
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
|
| 17 |
-
from tabs.model_comparison import create_model_comparison_tab, compare_models
|
| 18 |
-
from tabs.data_exploration import create_exploration_tab, filter_and_display
|
| 19 |
|
| 20 |
|
| 21 |
def create_app():
|
|
@@ -32,10 +30,6 @@ def create_app():
|
|
| 32 |
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
| 33 |
)
|
| 34 |
|
| 35 |
-
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT)
|
| 36 |
-
|
| 37 |
-
exp_outputs = create_exploration_tab(df)
|
| 38 |
-
|
| 39 |
# Initial loads
|
| 40 |
app.load(
|
| 41 |
fn=lambda: filter_leaderboard(
|
|
@@ -44,26 +38,6 @@ def create_app():
|
|
| 44 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
| 45 |
)
|
| 46 |
|
| 47 |
-
app.load(
|
| 48 |
-
fn=lambda: compare_models(
|
| 49 |
-
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
| 50 |
-
),
|
| 51 |
-
outputs=[mc_info, mc_plot],
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
app.load(
|
| 55 |
-
fn=lambda: filter_and_display(
|
| 56 |
-
MODELS[0],
|
| 57 |
-
DATASETS[0],
|
| 58 |
-
min(SCORES),
|
| 59 |
-
max(SCORES),
|
| 60 |
-
0,
|
| 61 |
-
0,
|
| 62 |
-
0,
|
| 63 |
-
),
|
| 64 |
-
outputs=exp_outputs[:-1],
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
return app
|
| 68 |
|
| 69 |
|
|
|
|
| 14 |
SCORES,
|
| 15 |
)
|
| 16 |
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
def create_app():
|
|
|
|
| 30 |
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
| 31 |
)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# Initial loads
|
| 34 |
app.load(
|
| 35 |
fn=lambda: filter_leaderboard(
|
|
|
|
| 38 |
outputs=[lb_output, lb_plot1, lb_plot2],
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
return app
|
| 42 |
|
| 43 |
|
data_loader.py
CHANGED
|
@@ -23,7 +23,7 @@ SCORES = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
|
| 23 |
|
| 24 |
def load_data():
|
| 25 |
"""Load and preprocess the data."""
|
| 26 |
-
df = pd.read_csv("
|
| 27 |
|
| 28 |
# Add combined I/O cost column with 3:1 ratio
|
| 29 |
df["IO Cost"] = (
|
|
@@ -596,7 +596,7 @@ HEADER_CONTENT = (
|
|
| 596 |
<div class="header-content">
|
| 597 |
<div class="title-section">
|
| 598 |
|
| 599 |
-
<div class="title-gradient">Agent Leaderboard</div>
|
| 600 |
|
| 601 |
<div class="description">
|
| 602 |
GenAI is evolving rapidly with developers building high ROI agents. <br>
|
|
|
|
| 23 |
|
| 24 |
def load_data():
|
| 25 |
"""Load and preprocess the data."""
|
| 26 |
+
df = pd.read_csv("results_v1.csv").dropna()
|
| 27 |
|
| 28 |
# Add combined I/O cost column with 3:1 ratio
|
| 29 |
df["IO Cost"] = (
|
|
|
|
| 596 |
<div class="header-content">
|
| 597 |
<div class="title-section">
|
| 598 |
|
| 599 |
+
<div class="title-gradient">Agent Leaderboard v1</div>
|
| 600 |
|
| 601 |
<div class="description">
|
| 602 |
GenAI is evolving rapidly with developers building high ROI agents. <br>
|
results.csv → results_v1.csv
RENAMED
|
File without changes
|
tabs/data_exploration.py
DELETED
|
@@ -1,810 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
-
from data_loader import MODELS, DATASETS, SCORES, HEADER_CONTENT
|
| 5 |
-
from chat import (
|
| 6 |
-
format_chat_display,
|
| 7 |
-
format_metrics_display,
|
| 8 |
-
format_tool_info,
|
| 9 |
-
)
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def get_updated_df(df, df_output):
|
| 13 |
-
df = df.iloc[: len(df_output)].copy()
|
| 14 |
-
df["response"] = df_output["response"].tolist()
|
| 15 |
-
df["rationale"] = df_output["rationale"].tolist()
|
| 16 |
-
df["explanation"] = df_output["explanation"].tolist()
|
| 17 |
-
df["score"] = df_output["score"].tolist()
|
| 18 |
-
cols = [
|
| 19 |
-
"conversation",
|
| 20 |
-
"tools_langchain",
|
| 21 |
-
"n_turns",
|
| 22 |
-
"len_query",
|
| 23 |
-
"n_tools",
|
| 24 |
-
"response",
|
| 25 |
-
"rationale",
|
| 26 |
-
"explanation",
|
| 27 |
-
"score",
|
| 28 |
-
]
|
| 29 |
-
return df[cols]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def get_chat_and_score_df(model, dataset):
|
| 33 |
-
df_output = pd.read_parquet(f"output/{model}/{dataset}.parquet")
|
| 34 |
-
df = pd.read_parquet(f"datasets/{dataset}.parquet")
|
| 35 |
-
df = get_updated_df(df, df_output)
|
| 36 |
-
return df
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def on_filter_change(
|
| 40 |
-
model,
|
| 41 |
-
dataset,
|
| 42 |
-
min_score,
|
| 43 |
-
max_score,
|
| 44 |
-
min_n_turns,
|
| 45 |
-
min_len_query,
|
| 46 |
-
min_n_tools,
|
| 47 |
-
):
|
| 48 |
-
try:
|
| 49 |
-
# Call filter_and_display with index 0 and unpack 4 values
|
| 50 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
| 51 |
-
model,
|
| 52 |
-
dataset,
|
| 53 |
-
min_score,
|
| 54 |
-
max_score,
|
| 55 |
-
min_n_turns,
|
| 56 |
-
min_len_query,
|
| 57 |
-
min_n_tools,
|
| 58 |
-
0,
|
| 59 |
-
)
|
| 60 |
-
# Return exactly 4 values
|
| 61 |
-
return chat_html, metrics_html, tool_html, index_html
|
| 62 |
-
except Exception as e:
|
| 63 |
-
error_html = f"""
|
| 64 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
| 65 |
-
<div style="font-weight: 600;">Filter Error</div>
|
| 66 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
| 67 |
-
{str(e)}
|
| 68 |
-
</div>
|
| 69 |
-
</div>
|
| 70 |
-
"""
|
| 71 |
-
return (
|
| 72 |
-
error_html,
|
| 73 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
| 74 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
| 75 |
-
"<div style='text-align: center;'>0/0</div>",
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def navigate_prev(
|
| 80 |
-
current_idx,
|
| 81 |
-
model,
|
| 82 |
-
dataset,
|
| 83 |
-
min_score,
|
| 84 |
-
max_score,
|
| 85 |
-
min_n_turns,
|
| 86 |
-
min_len_query,
|
| 87 |
-
min_n_tools,
|
| 88 |
-
):
|
| 89 |
-
try:
|
| 90 |
-
# Handle current_idx as dictionary
|
| 91 |
-
if isinstance(current_idx, dict) and "value" in current_idx:
|
| 92 |
-
idx_val = int(current_idx["value"])
|
| 93 |
-
else:
|
| 94 |
-
idx_val = int(current_idx) if current_idx is not None else 0
|
| 95 |
-
|
| 96 |
-
new_index = max(0, idx_val - 1)
|
| 97 |
-
|
| 98 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
| 99 |
-
model,
|
| 100 |
-
dataset,
|
| 101 |
-
min_score,
|
| 102 |
-
max_score,
|
| 103 |
-
min_n_turns,
|
| 104 |
-
min_len_query,
|
| 105 |
-
min_n_tools,
|
| 106 |
-
new_index,
|
| 107 |
-
)
|
| 108 |
-
return chat_html, metrics_html, tool_html, index_html, new_index
|
| 109 |
-
except Exception as e:
|
| 110 |
-
error_html = f"""
|
| 111 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
| 112 |
-
<div style="font-weight: 600;">Navigation Error</div>
|
| 113 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
| 114 |
-
{str(e)}
|
| 115 |
-
</div>
|
| 116 |
-
</div>
|
| 117 |
-
"""
|
| 118 |
-
return (
|
| 119 |
-
error_html,
|
| 120 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
| 121 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
| 122 |
-
"<div style='text-align: center;'>0/0</div>",
|
| 123 |
-
current_idx or 0,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def navigate_next(
|
| 128 |
-
current_idx,
|
| 129 |
-
model,
|
| 130 |
-
dataset,
|
| 131 |
-
min_score,
|
| 132 |
-
max_score,
|
| 133 |
-
min_n_turns,
|
| 134 |
-
min_len_query,
|
| 135 |
-
min_n_tools,
|
| 136 |
-
):
|
| 137 |
-
try:
|
| 138 |
-
# Handle current_idx as dictionary
|
| 139 |
-
if isinstance(current_idx, dict) and "value" in current_idx:
|
| 140 |
-
idx_val = int(current_idx["value"])
|
| 141 |
-
else:
|
| 142 |
-
idx_val = int(current_idx) if current_idx is not None else 0
|
| 143 |
-
|
| 144 |
-
new_index = idx_val + 1
|
| 145 |
-
|
| 146 |
-
chat_html, metrics_html, tool_html, index_html = filter_and_display(
|
| 147 |
-
model,
|
| 148 |
-
dataset,
|
| 149 |
-
min_score,
|
| 150 |
-
max_score,
|
| 151 |
-
min_n_turns,
|
| 152 |
-
min_len_query,
|
| 153 |
-
min_n_tools,
|
| 154 |
-
new_index,
|
| 155 |
-
)
|
| 156 |
-
return chat_html, metrics_html, tool_html, index_html, new_index
|
| 157 |
-
except Exception as e:
|
| 158 |
-
error_html = f"""
|
| 159 |
-
<div style="padding: 1.5rem; color: var(--score-low);">
|
| 160 |
-
<div style="font-weight: 600;">Navigation Error</div>
|
| 161 |
-
<div style="font-family: monospace; background-color: var(--surface-color-alt); padding: 0.5rem; margin-top: 0.5rem;">
|
| 162 |
-
{str(e)}
|
| 163 |
-
</div>
|
| 164 |
-
</div>
|
| 165 |
-
"""
|
| 166 |
-
return (
|
| 167 |
-
error_html,
|
| 168 |
-
"<div style='text-align: center;'>No metrics available</div>",
|
| 169 |
-
"<div style='text-align: center;'>No tool information available</div>",
|
| 170 |
-
"<div style='text-align: center;'>0/0</div>",
|
| 171 |
-
current_idx or 0,
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
def filter_and_display(
|
| 176 |
-
model,
|
| 177 |
-
dataset,
|
| 178 |
-
min_score,
|
| 179 |
-
max_score,
|
| 180 |
-
min_n_turns,
|
| 181 |
-
min_len_query,
|
| 182 |
-
min_n_tools,
|
| 183 |
-
index=0,
|
| 184 |
-
):
|
| 185 |
-
"""Combined function to filter data and update display"""
|
| 186 |
-
try:
|
| 187 |
-
# Extract model
|
| 188 |
-
if isinstance(model, dict):
|
| 189 |
-
if "value" in model:
|
| 190 |
-
model_str = str(model["value"])
|
| 191 |
-
else:
|
| 192 |
-
model_str = MODELS[0]
|
| 193 |
-
else:
|
| 194 |
-
model_str = str(model) if model is not None else MODELS[0]
|
| 195 |
-
|
| 196 |
-
# Extract dataset
|
| 197 |
-
if isinstance(dataset, dict):
|
| 198 |
-
if "value" in dataset:
|
| 199 |
-
dataset_str = str(dataset["value"])
|
| 200 |
-
else:
|
| 201 |
-
dataset_str = DATASETS[0]
|
| 202 |
-
else:
|
| 203 |
-
dataset_str = str(dataset) if dataset is not None else DATASETS[0]
|
| 204 |
-
|
| 205 |
-
# Extract min_score
|
| 206 |
-
if isinstance(min_score, dict):
|
| 207 |
-
if "value" in min_score:
|
| 208 |
-
min_score_val = float(min_score["value"])
|
| 209 |
-
else:
|
| 210 |
-
min_score_val = float(min(SCORES))
|
| 211 |
-
else:
|
| 212 |
-
min_score_val = (
|
| 213 |
-
float(min_score) if min_score is not None else float(min(SCORES))
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
# Extract max_score
|
| 217 |
-
if isinstance(max_score, dict):
|
| 218 |
-
if "value" in max_score:
|
| 219 |
-
max_score_val = float(max_score["value"])
|
| 220 |
-
else:
|
| 221 |
-
max_score_val = float(max(SCORES))
|
| 222 |
-
else:
|
| 223 |
-
max_score_val = (
|
| 224 |
-
float(max_score) if max_score is not None else float(max(SCORES))
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
# Extract min_n_turns
|
| 228 |
-
if isinstance(min_n_turns, dict):
|
| 229 |
-
if "value" in min_n_turns:
|
| 230 |
-
min_n_turns_val = int(min_n_turns["value"])
|
| 231 |
-
else:
|
| 232 |
-
min_n_turns_val = 0
|
| 233 |
-
else:
|
| 234 |
-
min_n_turns_val = int(min_n_turns) if min_n_turns is not None else 0
|
| 235 |
-
|
| 236 |
-
# Extract min_len_query
|
| 237 |
-
if isinstance(min_len_query, dict):
|
| 238 |
-
if "value" in min_len_query:
|
| 239 |
-
min_len_query_val = int(min_len_query["value"])
|
| 240 |
-
else:
|
| 241 |
-
min_len_query_val = 0
|
| 242 |
-
else:
|
| 243 |
-
min_len_query_val = int(min_len_query) if min_len_query is not None else 0
|
| 244 |
-
|
| 245 |
-
# Extract min_n_tools
|
| 246 |
-
if isinstance(min_n_tools, dict):
|
| 247 |
-
if "value" in min_n_tools:
|
| 248 |
-
min_n_tools_val = int(min_n_tools["value"])
|
| 249 |
-
else:
|
| 250 |
-
min_n_tools_val = 0
|
| 251 |
-
else:
|
| 252 |
-
min_n_tools_val = int(min_n_tools) if min_n_tools is not None else 0
|
| 253 |
-
|
| 254 |
-
# Extract index
|
| 255 |
-
if isinstance(index, dict):
|
| 256 |
-
if "value" in index:
|
| 257 |
-
try:
|
| 258 |
-
index_val = int(index["value"])
|
| 259 |
-
except (ValueError, TypeError):
|
| 260 |
-
index_val = 0
|
| 261 |
-
else:
|
| 262 |
-
index_val = 0
|
| 263 |
-
else:
|
| 264 |
-
try:
|
| 265 |
-
index_val = int(index) if index is not None else 0
|
| 266 |
-
except (ValueError, TypeError):
|
| 267 |
-
index_val = 0
|
| 268 |
-
|
| 269 |
-
# Get the data
|
| 270 |
-
df_chat = get_chat_and_score_df(model_str, dataset_str)
|
| 271 |
-
|
| 272 |
-
# Ensure filter columns exist
|
| 273 |
-
for col, default in [
|
| 274 |
-
("score", 0.0),
|
| 275 |
-
("n_turns", 0),
|
| 276 |
-
("len_query", 0),
|
| 277 |
-
("n_tools", 0),
|
| 278 |
-
]:
|
| 279 |
-
if col not in df_chat.columns:
|
| 280 |
-
df_chat[col] = default
|
| 281 |
-
else:
|
| 282 |
-
df_chat[col] = pd.to_numeric(df_chat[col], errors="coerce").fillna(
|
| 283 |
-
default
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
# Apply all filters
|
| 287 |
-
df_filtered = df_chat[
|
| 288 |
-
(df_chat["score"] >= min_score_val)
|
| 289 |
-
& (df_chat["score"] <= max_score_val)
|
| 290 |
-
& (df_chat["n_turns"] >= min_n_turns_val)
|
| 291 |
-
& (df_chat["len_query"] >= min_len_query_val)
|
| 292 |
-
& (df_chat["n_tools"] >= min_n_tools_val)
|
| 293 |
-
].copy()
|
| 294 |
-
|
| 295 |
-
# Check if dataframe is empty
|
| 296 |
-
if len(df_filtered) == 0:
|
| 297 |
-
empty_message = """
|
| 298 |
-
<div style="
|
| 299 |
-
padding: 1.5rem;
|
| 300 |
-
text-align: center;
|
| 301 |
-
color: var(--text-muted);
|
| 302 |
-
background-color: var(--surface-color-alt);
|
| 303 |
-
border-radius: 8px;
|
| 304 |
-
border: 1px dashed var(--border-color);
|
| 305 |
-
margin: 1rem 0;">
|
| 306 |
-
<div style="font-size: 2rem; margin-bottom: 1rem;">📭</div>
|
| 307 |
-
<div style="font-weight: 500; margin-bottom: 0.5rem;">No Results Found</div>
|
| 308 |
-
<div style="font-style: italic; font-size: 0.9rem;">Try adjusting your filters to see more data</div>
|
| 309 |
-
</div>
|
| 310 |
-
"""
|
| 311 |
-
return (
|
| 312 |
-
empty_message,
|
| 313 |
-
empty_message,
|
| 314 |
-
empty_message,
|
| 315 |
-
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
|
| 316 |
-
)
|
| 317 |
-
|
| 318 |
-
# Ensure index is valid
|
| 319 |
-
max_index = len(df_filtered) - 1
|
| 320 |
-
valid_index = max(0, min(index_val, max_index))
|
| 321 |
-
|
| 322 |
-
# Get the row
|
| 323 |
-
row = df_filtered.iloc[valid_index]
|
| 324 |
-
|
| 325 |
-
# Format displays
|
| 326 |
-
chat_html = format_chat_display(row)
|
| 327 |
-
metrics_html = format_metrics_display(row)
|
| 328 |
-
|
| 329 |
-
# Get tools info with error handling
|
| 330 |
-
try:
|
| 331 |
-
tool_html = format_tool_info(row["tools_langchain"])
|
| 332 |
-
except Exception as e:
|
| 333 |
-
tool_html = f"""
|
| 334 |
-
<div style="padding: 1rem; background-color: var(--surface-color-alt); border-radius: 8px; color: var(--text-muted);">
|
| 335 |
-
<div style="font-weight: 500; margin-bottom: 0.5rem;">Tool Information Unavailable</div>
|
| 336 |
-
<div style="font-size: 0.9rem;">Error: {str(e)}</div>
|
| 337 |
-
</div>
|
| 338 |
-
"""
|
| 339 |
-
|
| 340 |
-
# Index display
|
| 341 |
-
index_html = f"""
|
| 342 |
-
<div style="
|
| 343 |
-
display: flex;
|
| 344 |
-
align-items: center;
|
| 345 |
-
justify-content: center;
|
| 346 |
-
font-weight: 500;
|
| 347 |
-
color: var(--primary-text);
|
| 348 |
-
background-color: var(--surface-color-alt);
|
| 349 |
-
padding: 0.5rem 1rem;
|
| 350 |
-
border-radius: 20px;
|
| 351 |
-
font-size: 0.9rem;
|
| 352 |
-
width: fit-content;
|
| 353 |
-
margin: 0 auto;">
|
| 354 |
-
<span style="margin-right: 0.5rem;">📄</span>{valid_index + 1}/{len(df_filtered)}
|
| 355 |
-
</div>
|
| 356 |
-
"""
|
| 357 |
-
|
| 358 |
-
return chat_html, metrics_html, tool_html, index_html
|
| 359 |
-
|
| 360 |
-
except Exception as e:
|
| 361 |
-
error_html = f"""
|
| 362 |
-
<div style="
|
| 363 |
-
padding: 1.5rem;
|
| 364 |
-
color: var(--score-low);
|
| 365 |
-
background-color: var(--surface-color);
|
| 366 |
-
border: 1px solid var(--score-low);
|
| 367 |
-
border-radius: 8px;
|
| 368 |
-
margin: 1rem 0;
|
| 369 |
-
display: flex;
|
| 370 |
-
align-items: flex-start;">
|
| 371 |
-
<div style="flex-shrink: 0; margin-right: 1rem; font-size: 1.5rem;">⚠️</div>
|
| 372 |
-
<div>
|
| 373 |
-
<div style="font-weight: 600; margin-bottom: 0.5rem;">Error Occurred</div>
|
| 374 |
-
<div style="
|
| 375 |
-
font-family: monospace;
|
| 376 |
-
background-color: var(--surface-color-alt);
|
| 377 |
-
padding: 1rem;
|
| 378 |
-
border-radius: 4px;
|
| 379 |
-
white-space: pre-wrap;
|
| 380 |
-
font-size: 0.9rem;">
|
| 381 |
-
{str(e)}
|
| 382 |
-
</div>
|
| 383 |
-
</div>
|
| 384 |
-
</div>
|
| 385 |
-
"""
|
| 386 |
-
return (
|
| 387 |
-
error_html,
|
| 388 |
-
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No metrics available</div>",
|
| 389 |
-
"<div style='padding: 1.5rem; color: var(--text-muted); text-align: center;'>No tool information available</div>",
|
| 390 |
-
"<div style='text-align: center; color: var(--text-muted);'>0/0</div>",
|
| 391 |
-
)
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
def create_exploration_tab(df):
|
| 395 |
-
"""Create an enhanced data exploration tab with better UI and functionality."""
|
| 396 |
-
|
| 397 |
-
# Main UI setup
|
| 398 |
-
with gr.Tab("Data Exploration"):
|
| 399 |
-
# CSS styling (unchanged)
|
| 400 |
-
gr.HTML(
|
| 401 |
-
"""
|
| 402 |
-
<style>
|
| 403 |
-
/* Custom styling for the exploration tab */
|
| 404 |
-
:root[data-theme="light"] {
|
| 405 |
-
--surface-color: #f8f9fa;
|
| 406 |
-
--surface-color-alt: #ffffff;
|
| 407 |
-
--text-color: #202124;
|
| 408 |
-
--text-muted: #666666;
|
| 409 |
-
--primary-text: #1a73e8;
|
| 410 |
-
--primary-text-light: rgba(26, 115, 232, 0.3);
|
| 411 |
-
--border-color: #e9ecef;
|
| 412 |
-
--border-color-light: #f1f3f5;
|
| 413 |
-
--shadow-color: rgba(0,0,0,0.05);
|
| 414 |
-
--message-bg-user: #E5F6FD;
|
| 415 |
-
--message-bg-assistant: #F7F7F8;
|
| 416 |
-
--message-bg-system: #FFF3E0;
|
| 417 |
-
--response-bg: #F0F7FF;
|
| 418 |
-
--score-high: #1a73e8;
|
| 419 |
-
--score-med: #f4b400;
|
| 420 |
-
--score-low: #ea4335;
|
| 421 |
-
}
|
| 422 |
-
|
| 423 |
-
:root[data-theme="dark"] {
|
| 424 |
-
--surface-color: #1e1e1e;
|
| 425 |
-
--surface-color-alt: #2d2d2d;
|
| 426 |
-
--text-color: #ffffff;
|
| 427 |
-
--text-muted: #a0a0a0;
|
| 428 |
-
--primary-text: #60a5fa;
|
| 429 |
-
--primary-text-light: rgba(96, 165, 250, 0.3);
|
| 430 |
-
--border-color: #404040;
|
| 431 |
-
--border-color-light: #333333;
|
| 432 |
-
--shadow-color: rgba(0,0,0,0.2);
|
| 433 |
-
--message-bg-user: #2d3748;
|
| 434 |
-
--message-bg-assistant: #1a1a1a;
|
| 435 |
-
--message-bg-system: #2c2516;
|
| 436 |
-
--response-bg: #1e2a3a;
|
| 437 |
-
--score-high: #60a5fa;
|
| 438 |
-
--score-med: #fbbf24;
|
| 439 |
-
--score-low: #ef4444;
|
| 440 |
-
}
|
| 441 |
-
|
| 442 |
-
#exploration-header {
|
| 443 |
-
margin-bottom: 1.5rem;
|
| 444 |
-
padding-bottom: 1rem;
|
| 445 |
-
border-bottom: 1px solid var(--border-color);
|
| 446 |
-
}
|
| 447 |
-
|
| 448 |
-
.filter-container {
|
| 449 |
-
background-color: var(--surface-color);
|
| 450 |
-
border-radius: 10px;
|
| 451 |
-
padding: 1rem;
|
| 452 |
-
margin-bottom: 1.5rem;
|
| 453 |
-
border: 1px solid var(--border-color);
|
| 454 |
-
box-shadow: 0 2px 6px var(--shadow-color);
|
| 455 |
-
}
|
| 456 |
-
|
| 457 |
-
.navigation-buttons button {
|
| 458 |
-
min-width: 120px;
|
| 459 |
-
font-weight: 500;
|
| 460 |
-
}
|
| 461 |
-
|
| 462 |
-
.content-panel {
|
| 463 |
-
margin-top: 1.5rem;
|
| 464 |
-
}
|
| 465 |
-
|
| 466 |
-
@media (max-width: 768px) {
|
| 467 |
-
.filter-row {
|
| 468 |
-
flex-direction: column;
|
| 469 |
-
}
|
| 470 |
-
}
|
| 471 |
-
</style>
|
| 472 |
-
"""
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
# Header
|
| 476 |
-
with gr.Row(elem_id="exploration-header"):
|
| 477 |
-
gr.HTML(HEADER_CONTENT)
|
| 478 |
-
|
| 479 |
-
# Filters section
|
| 480 |
-
with gr.Column(elem_classes="filter-container"):
|
| 481 |
-
gr.Markdown("### 🔍 Filter Options")
|
| 482 |
-
|
| 483 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
| 484 |
-
explore_model = gr.Dropdown(
|
| 485 |
-
choices=MODELS,
|
| 486 |
-
value=MODELS[0],
|
| 487 |
-
label="Model",
|
| 488 |
-
container=True,
|
| 489 |
-
scale=1,
|
| 490 |
-
info="Select AI model",
|
| 491 |
-
)
|
| 492 |
-
explore_dataset = gr.Dropdown(
|
| 493 |
-
choices=DATASETS,
|
| 494 |
-
value=DATASETS[0],
|
| 495 |
-
label="Dataset",
|
| 496 |
-
container=True,
|
| 497 |
-
scale=1,
|
| 498 |
-
info="Select evaluation dataset",
|
| 499 |
-
)
|
| 500 |
-
|
| 501 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
| 502 |
-
min_score = gr.Slider(
|
| 503 |
-
minimum=float(min(SCORES)),
|
| 504 |
-
maximum=float(max(SCORES)),
|
| 505 |
-
value=float(min(SCORES)),
|
| 506 |
-
step=0.1,
|
| 507 |
-
label="Minimum TSQ Score",
|
| 508 |
-
container=True,
|
| 509 |
-
scale=1,
|
| 510 |
-
info="Filter responses with scores above this threshold",
|
| 511 |
-
)
|
| 512 |
-
max_score = gr.Slider(
|
| 513 |
-
minimum=float(min(SCORES)),
|
| 514 |
-
maximum=float(max(SCORES)),
|
| 515 |
-
value=float(max(SCORES)),
|
| 516 |
-
step=0.1,
|
| 517 |
-
label="Maximum TSQ Score",
|
| 518 |
-
container=True,
|
| 519 |
-
scale=1,
|
| 520 |
-
info="Filter responses with scores below this threshold",
|
| 521 |
-
)
|
| 522 |
-
|
| 523 |
-
# Get the data for initial ranges
|
| 524 |
-
df_chat = get_chat_and_score_df(explore_model.value, explore_dataset.value)
|
| 525 |
-
|
| 526 |
-
# Ensure columns exist and get ranges
|
| 527 |
-
n_turns_max = int(df_chat["n_turns"].max())
|
| 528 |
-
len_query_max = int(df_chat["len_query"].max())
|
| 529 |
-
n_tools_max = int(df_chat["n_tools"].max())
|
| 530 |
-
|
| 531 |
-
with gr.Row(equal_height=True, elem_classes="filter-row"):
|
| 532 |
-
n_turns_filter = gr.Slider(
|
| 533 |
-
minimum=0,
|
| 534 |
-
maximum=n_turns_max,
|
| 535 |
-
value=0,
|
| 536 |
-
step=1,
|
| 537 |
-
label="Minimum Turn Count",
|
| 538 |
-
container=True,
|
| 539 |
-
scale=1,
|
| 540 |
-
info="Filter by minimum number of conversation turns",
|
| 541 |
-
)
|
| 542 |
-
|
| 543 |
-
len_query_filter = gr.Slider(
|
| 544 |
-
minimum=0,
|
| 545 |
-
maximum=len_query_max,
|
| 546 |
-
value=0,
|
| 547 |
-
step=10,
|
| 548 |
-
label="Minimum Query Length",
|
| 549 |
-
container=True,
|
| 550 |
-
scale=1,
|
| 551 |
-
info="Filter by minimum length of query in characters",
|
| 552 |
-
)
|
| 553 |
-
|
| 554 |
-
n_tools_filter = gr.Slider(
|
| 555 |
-
minimum=0,
|
| 556 |
-
maximum=n_tools_max,
|
| 557 |
-
value=0,
|
| 558 |
-
step=1,
|
| 559 |
-
label="Minimum Tool Count",
|
| 560 |
-
container=True,
|
| 561 |
-
scale=1,
|
| 562 |
-
info="Filter by minimum number of tools used",
|
| 563 |
-
)
|
| 564 |
-
|
| 565 |
-
with gr.Row():
|
| 566 |
-
reset_btn = gr.Button("Reset Filters", size="sm", variant="secondary")
|
| 567 |
-
|
| 568 |
-
# Navigation row
|
| 569 |
-
with gr.Row(variant="panel"):
|
| 570 |
-
with gr.Column(scale=1):
|
| 571 |
-
prev_btn = gr.Button(
|
| 572 |
-
"← Previous",
|
| 573 |
-
size="lg",
|
| 574 |
-
variant="secondary",
|
| 575 |
-
elem_classes="navigation-buttons",
|
| 576 |
-
)
|
| 577 |
-
|
| 578 |
-
with gr.Column(scale=1, min_width=100):
|
| 579 |
-
# Get initial count from default data
|
| 580 |
-
df_initial = get_chat_and_score_df(MODELS[0], DATASETS[0])
|
| 581 |
-
initial_count = len(df_initial)
|
| 582 |
-
|
| 583 |
-
index_display = gr.HTML(
|
| 584 |
-
value=f"""<div style="
|
| 585 |
-
display: flex;
|
| 586 |
-
align-items: center;
|
| 587 |
-
justify-content: center;
|
| 588 |
-
font-weight: 500;
|
| 589 |
-
color: var(--primary-text);
|
| 590 |
-
background-color: var(--surface-color-alt);
|
| 591 |
-
padding: 0.5rem 1rem;
|
| 592 |
-
border-radius: 20px;
|
| 593 |
-
font-size: 0.9rem;
|
| 594 |
-
width: fit-content;
|
| 595 |
-
margin: 0 auto;">
|
| 596 |
-
<span style="margin-right: 0.5rem;">📄</span>1/{initial_count}
|
| 597 |
-
</div>""",
|
| 598 |
-
elem_id="index-display",
|
| 599 |
-
)
|
| 600 |
-
|
| 601 |
-
with gr.Column(scale=1):
|
| 602 |
-
next_btn = gr.Button(
|
| 603 |
-
"Next →",
|
| 604 |
-
size="lg",
|
| 605 |
-
variant="secondary",
|
| 606 |
-
elem_classes="navigation-buttons",
|
| 607 |
-
)
|
| 608 |
-
|
| 609 |
-
# Content areas
|
| 610 |
-
with gr.Row(equal_height=True):
|
| 611 |
-
with gr.Column(scale=1):
|
| 612 |
-
chat_display = gr.HTML()
|
| 613 |
-
with gr.Column(scale=1):
|
| 614 |
-
metrics_display = gr.HTML()
|
| 615 |
-
|
| 616 |
-
with gr.Row():
|
| 617 |
-
tool_info_display = gr.HTML()
|
| 618 |
-
|
| 619 |
-
# State for tracking current index (simple integer state)
|
| 620 |
-
current_index = gr.State(value=0)
|
| 621 |
-
|
| 622 |
-
def reset_index():
|
| 623 |
-
"""Reset the current index to 0"""
|
| 624 |
-
return 0
|
| 625 |
-
|
| 626 |
-
# Add these explicit event handlers for model and dataset changes
|
| 627 |
-
explore_model.change(
|
| 628 |
-
reset_index,
|
| 629 |
-
inputs=[],
|
| 630 |
-
outputs=[current_index],
|
| 631 |
-
)
|
| 632 |
-
|
| 633 |
-
explore_dataset.change(
|
| 634 |
-
reset_index,
|
| 635 |
-
inputs=[],
|
| 636 |
-
outputs=[current_index],
|
| 637 |
-
)
|
| 638 |
-
|
| 639 |
-
min_score.change(
|
| 640 |
-
reset_index,
|
| 641 |
-
inputs=[],
|
| 642 |
-
outputs=[current_index],
|
| 643 |
-
)
|
| 644 |
-
|
| 645 |
-
max_score.change(
|
| 646 |
-
reset_index,
|
| 647 |
-
inputs=[],
|
| 648 |
-
outputs=[current_index],
|
| 649 |
-
)
|
| 650 |
-
|
| 651 |
-
n_turns_filter.change(
|
| 652 |
-
reset_index,
|
| 653 |
-
inputs=[],
|
| 654 |
-
outputs=[current_index],
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
len_query_filter.change(
|
| 658 |
-
reset_index,
|
| 659 |
-
inputs=[],
|
| 660 |
-
outputs=[current_index],
|
| 661 |
-
)
|
| 662 |
-
|
| 663 |
-
n_tools_filter.change(
|
| 664 |
-
reset_index,
|
| 665 |
-
inputs=[],
|
| 666 |
-
outputs=[current_index],
|
| 667 |
-
)
|
| 668 |
-
|
| 669 |
-
# Reset filters
|
| 670 |
-
def reset_filters():
|
| 671 |
-
return (
|
| 672 |
-
MODELS[0],
|
| 673 |
-
DATASETS[0],
|
| 674 |
-
float(min(SCORES)),
|
| 675 |
-
float(max(SCORES)),
|
| 676 |
-
0, # n_turns
|
| 677 |
-
0, # len_query
|
| 678 |
-
0, # n_tools
|
| 679 |
-
)
|
| 680 |
-
|
| 681 |
-
reset_btn.click(
|
| 682 |
-
reset_filters,
|
| 683 |
-
outputs=[
|
| 684 |
-
explore_model,
|
| 685 |
-
explore_dataset,
|
| 686 |
-
min_score,
|
| 687 |
-
max_score,
|
| 688 |
-
n_turns_filter,
|
| 689 |
-
len_query_filter,
|
| 690 |
-
n_tools_filter,
|
| 691 |
-
],
|
| 692 |
-
)
|
| 693 |
-
|
| 694 |
-
# Connect filter changes
|
| 695 |
-
# Replace the existing filter connections with this:
|
| 696 |
-
for control in [
|
| 697 |
-
explore_model,
|
| 698 |
-
explore_dataset,
|
| 699 |
-
min_score,
|
| 700 |
-
max_score,
|
| 701 |
-
n_turns_filter,
|
| 702 |
-
len_query_filter,
|
| 703 |
-
n_tools_filter,
|
| 704 |
-
]:
|
| 705 |
-
control.change(
|
| 706 |
-
on_filter_change,
|
| 707 |
-
inputs=[
|
| 708 |
-
explore_model,
|
| 709 |
-
explore_dataset,
|
| 710 |
-
min_score,
|
| 711 |
-
max_score,
|
| 712 |
-
n_turns_filter,
|
| 713 |
-
len_query_filter,
|
| 714 |
-
n_tools_filter,
|
| 715 |
-
],
|
| 716 |
-
outputs=[
|
| 717 |
-
chat_display,
|
| 718 |
-
metrics_display,
|
| 719 |
-
tool_info_display,
|
| 720 |
-
index_display,
|
| 721 |
-
],
|
| 722 |
-
)
|
| 723 |
-
|
| 724 |
-
# Connect navigation buttons with necessary filter parameters
|
| 725 |
-
prev_btn.click(
|
| 726 |
-
navigate_prev,
|
| 727 |
-
inputs=[
|
| 728 |
-
current_index,
|
| 729 |
-
explore_model,
|
| 730 |
-
explore_dataset,
|
| 731 |
-
min_score,
|
| 732 |
-
max_score,
|
| 733 |
-
n_turns_filter,
|
| 734 |
-
len_query_filter,
|
| 735 |
-
n_tools_filter,
|
| 736 |
-
],
|
| 737 |
-
outputs=[
|
| 738 |
-
chat_display,
|
| 739 |
-
metrics_display,
|
| 740 |
-
tool_info_display,
|
| 741 |
-
index_display,
|
| 742 |
-
current_index,
|
| 743 |
-
],
|
| 744 |
-
)
|
| 745 |
-
|
| 746 |
-
next_btn.click(
|
| 747 |
-
navigate_next,
|
| 748 |
-
inputs=[
|
| 749 |
-
current_index,
|
| 750 |
-
explore_model,
|
| 751 |
-
explore_dataset,
|
| 752 |
-
min_score,
|
| 753 |
-
max_score,
|
| 754 |
-
n_turns_filter,
|
| 755 |
-
len_query_filter,
|
| 756 |
-
n_tools_filter,
|
| 757 |
-
],
|
| 758 |
-
outputs=[
|
| 759 |
-
chat_display,
|
| 760 |
-
metrics_display,
|
| 761 |
-
tool_info_display,
|
| 762 |
-
index_display,
|
| 763 |
-
current_index,
|
| 764 |
-
],
|
| 765 |
-
)
|
| 766 |
-
|
| 767 |
-
def update_slider_ranges(model, dataset):
|
| 768 |
-
df_chat = get_chat_and_score_df(model, dataset)
|
| 769 |
-
|
| 770 |
-
# Make sure columns are numeric first
|
| 771 |
-
df_chat["n_turns"] = pd.to_numeric(
|
| 772 |
-
df_chat["n_turns"], errors="coerce"
|
| 773 |
-
).fillna(0)
|
| 774 |
-
df_chat["len_query"] = pd.to_numeric(
|
| 775 |
-
df_chat["len_query"], errors="coerce"
|
| 776 |
-
).fillna(0)
|
| 777 |
-
df_chat["n_tools"] = pd.to_numeric(
|
| 778 |
-
df_chat["n_tools"], errors="coerce"
|
| 779 |
-
).fillna(0)
|
| 780 |
-
|
| 781 |
-
# Calculate maximums with safety buffers
|
| 782 |
-
n_turns_max = max(1, int(df_chat["n_turns"].max()))
|
| 783 |
-
len_query_max = max(10, int(df_chat["len_query"].max()))
|
| 784 |
-
n_tools_max = max(1, int(df_chat["n_tools"].max()))
|
| 785 |
-
|
| 786 |
-
# Return updated sliders using gr.update()
|
| 787 |
-
return (
|
| 788 |
-
gr.update(maximum=n_turns_max, value=0),
|
| 789 |
-
gr.update(maximum=len_query_max, value=0),
|
| 790 |
-
gr.update(maximum=n_tools_max, value=0),
|
| 791 |
-
)
|
| 792 |
-
|
| 793 |
-
# Connect model and dataset changes to slider range updates
|
| 794 |
-
explore_model.change(
|
| 795 |
-
update_slider_ranges,
|
| 796 |
-
inputs=[explore_model, explore_dataset],
|
| 797 |
-
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
| 798 |
-
)
|
| 799 |
-
explore_dataset.change(
|
| 800 |
-
update_slider_ranges,
|
| 801 |
-
inputs=[explore_model, explore_dataset],
|
| 802 |
-
outputs=[n_turns_filter, len_query_filter, n_tools_filter],
|
| 803 |
-
)
|
| 804 |
-
|
| 805 |
-
return [
|
| 806 |
-
chat_display,
|
| 807 |
-
metrics_display,
|
| 808 |
-
tool_info_display,
|
| 809 |
-
index_display,
|
| 810 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/leaderboard.py
CHANGED
|
@@ -156,7 +156,7 @@ def filter_leaderboard(df, model_type, category, sort_by):
|
|
| 156 |
|
| 157 |
|
| 158 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
| 159 |
-
with gr.Tab("Leaderboard"):
|
| 160 |
gr.HTML(HEADER_CONTENT + CARDS)
|
| 161 |
gr.HTML(DESCRIPTION_HTML)
|
| 162 |
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
| 159 |
+
with gr.Tab("Leaderboard v1"):
|
| 160 |
gr.HTML(HEADER_CONTENT + CARDS)
|
| 161 |
gr.HTML(DESCRIPTION_HTML)
|
| 162 |
|