Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Pratik Bhavsar
commited on
Commit
·
4a46abc
1
Parent(s):
523927e
refactoring and auto theme
Browse files- .gitignore +3 -1
- app.py +33 -82
- chat.py +174 -188
- data_loader.py +448 -102
- tabs/data_exploration.py +148 -0
- tabs/leaderboard.py +278 -0
- tabs/model_comparison.py +73 -0
- utils.py +0 -208
.gitignore
CHANGED
|
@@ -171,4 +171,6 @@ cython_debug/
|
|
| 171 |
.pypirc
|
| 172 |
|
| 173 |
data/
|
| 174 |
-
.DS_Store
|
|
|
|
|
|
|
|
|
| 171 |
.pypirc
|
| 172 |
|
| 173 |
data/
|
| 174 |
+
.DS_Store
|
| 175 |
+
datasets
|
| 176 |
+
get_results.ipynb
|
app.py
CHANGED
|
@@ -1,114 +1,65 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from data_loader import (
|
| 3 |
load_data,
|
| 4 |
CATEGORIES,
|
| 5 |
-
INSIGHTS,
|
| 6 |
METHODOLOGY,
|
| 7 |
HEADER_CONTENT,
|
| 8 |
CARDS,
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
-
from
|
| 11 |
-
from
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def create_app():
|
| 14 |
-
setup_matplotlib()
|
| 15 |
df = load_data()
|
| 16 |
|
|
|
|
|
|
|
| 17 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
| 18 |
with gr.Tabs():
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
with gr.Column(scale=1):
|
| 24 |
-
gr.HTML(
|
| 25 |
-
"""
|
| 26 |
-
<div style="background: #1a1b1e; padding: 20px; border-radius: 12px; margin-bottom: 20px;">
|
| 27 |
-
<h3 style="margin-top: 0; color: white; font-size: 1.2em;">Filters</h3>
|
| 28 |
-
</div>
|
| 29 |
-
"""
|
| 30 |
-
)
|
| 31 |
-
model_type = gr.Dropdown(
|
| 32 |
-
choices=["All"] + df["Model Type"].unique().tolist(),
|
| 33 |
-
value="All",
|
| 34 |
-
label="Model Type",
|
| 35 |
-
container=True,
|
| 36 |
-
)
|
| 37 |
-
category = gr.Dropdown(
|
| 38 |
-
choices=list(CATEGORIES.keys()),
|
| 39 |
-
value=list(CATEGORIES.keys())[0],
|
| 40 |
-
label="Category",
|
| 41 |
-
container=True,
|
| 42 |
-
)
|
| 43 |
-
sort_by = gr.Radio(
|
| 44 |
-
choices=["Performance", "Cost"],
|
| 45 |
-
value="Performance",
|
| 46 |
-
label="Sort by",
|
| 47 |
-
container=True,
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
# Right column for content (80% width)
|
| 51 |
-
with gr.Column(scale=4):
|
| 52 |
-
output = gr.HTML()
|
| 53 |
-
plot1 = gr.Plot()
|
| 54 |
-
plot2 = gr.Plot()
|
| 55 |
-
gr.Markdown(METHODOLOGY)
|
| 56 |
|
| 57 |
-
|
| 58 |
-
input_comp.change(
|
| 59 |
-
fn=lambda m, c, s: filter_leaderboard(df, m, c, s),
|
| 60 |
-
inputs=[model_type, category, sort_by],
|
| 61 |
-
outputs=[output, plot1, plot2],
|
| 62 |
-
)
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# Left column for filters (20% width)
|
| 68 |
-
with gr.Column(scale=1):
|
| 69 |
-
gr.HTML(
|
| 70 |
-
"""
|
| 71 |
-
<div style="background: #1a1b1e; padding: 20px; border-radius: 12px; margin-bottom: 20px;">
|
| 72 |
-
<h3 style="margin-top: 0; color: white; font-size: 1.2em;">Models</h3>
|
| 73 |
-
</div>
|
| 74 |
-
"""
|
| 75 |
-
)
|
| 76 |
-
model_selector = gr.Dropdown(
|
| 77 |
-
choices=df["Model"].unique().tolist(),
|
| 78 |
-
value=df.sort_values("Model Avg", ascending=False).iloc[0][
|
| 79 |
-
"Model"
|
| 80 |
-
],
|
| 81 |
-
multiselect=True,
|
| 82 |
-
label="Select Models",
|
| 83 |
-
container=True,
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
# Right column for content (80% width)
|
| 87 |
-
with gr.Column(scale=4):
|
| 88 |
-
model_info = gr.HTML()
|
| 89 |
-
radar_plot = gr.Plot()
|
| 90 |
-
|
| 91 |
-
model_selector.change(
|
| 92 |
-
fn=lambda m: model_info_tab(df, m),
|
| 93 |
-
inputs=[model_selector],
|
| 94 |
-
outputs=[model_info, radar_plot],
|
| 95 |
-
)
|
| 96 |
|
|
|
|
| 97 |
app.load(
|
| 98 |
fn=lambda: filter_leaderboard(
|
| 99 |
df, "All", list(CATEGORIES.keys())[0], "Performance"
|
| 100 |
),
|
| 101 |
-
outputs=[
|
| 102 |
)
|
| 103 |
|
| 104 |
app.load(
|
| 105 |
-
fn=lambda:
|
| 106 |
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
| 107 |
),
|
| 108 |
-
outputs=[
|
| 109 |
)
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
return app
|
| 112 |
|
|
|
|
| 113 |
demo = create_app()
|
| 114 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import promptquality as pq
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
pq.login("https://console.demo.rungalileo.io")
|
| 7 |
+
|
| 8 |
from data_loader import (
|
| 9 |
load_data,
|
| 10 |
CATEGORIES,
|
|
|
|
| 11 |
METHODOLOGY,
|
| 12 |
HEADER_CONTENT,
|
| 13 |
CARDS,
|
| 14 |
+
DATASETS,
|
| 15 |
+
SCORES,
|
| 16 |
)
|
| 17 |
+
from tabs.leaderboard import create_leaderboard_tab, filter_leaderboard
|
| 18 |
+
from tabs.model_comparison import create_model_comparison_tab, compare_models
|
| 19 |
+
from tabs.data_exploration import create_exploration_tab
|
| 20 |
+
from chat import filter_and_update_display
|
| 21 |
+
|
| 22 |
|
| 23 |
def create_app():
|
|
|
|
| 24 |
df = load_data()
|
| 25 |
|
| 26 |
+
MODELS = [x.strip() for x in df["Model"].unique().tolist()]
|
| 27 |
+
|
| 28 |
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
| 29 |
with gr.Tabs():
|
| 30 |
+
# Create tabs
|
| 31 |
+
lb_output, lb_plot1, lb_plot2 = create_leaderboard_tab(
|
| 32 |
+
df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS
|
| 33 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
mc_info, mc_plot = create_model_comparison_tab(df, HEADER_CONTENT, CARDS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# exp_outputs = create_exploration_tab(
|
| 38 |
+
# df, MODELS, DATASETS, SCORES, HEADER_CONTENT
|
| 39 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Initial loads
|
| 42 |
app.load(
|
| 43 |
fn=lambda: filter_leaderboard(
|
| 44 |
df, "All", list(CATEGORIES.keys())[0], "Performance"
|
| 45 |
),
|
| 46 |
+
outputs=[lb_output, lb_plot1, lb_plot2],
|
| 47 |
)
|
| 48 |
|
| 49 |
app.load(
|
| 50 |
+
fn=lambda: compare_models(
|
| 51 |
df, [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
| 52 |
),
|
| 53 |
+
outputs=[mc_info, mc_plot],
|
| 54 |
)
|
| 55 |
|
| 56 |
+
# app.load(
|
| 57 |
+
# fn=lambda: filter_and_update_display(MODELS[0], DATASETS[0], [], 0),
|
| 58 |
+
# outputs=exp_outputs,
|
| 59 |
+
# )
|
| 60 |
+
|
| 61 |
return app
|
| 62 |
|
| 63 |
+
|
| 64 |
demo = create_app()
|
| 65 |
demo.launch()
|
chat.py
CHANGED
|
@@ -1,35 +1,66 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
"
|
| 20 |
-
"
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
]
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def format_chat_message(role, content):
|
|
|
|
| 33 |
role_style = role.lower()
|
| 34 |
return f"""
|
| 35 |
<div class="message {role_style}">
|
|
@@ -39,175 +70,130 @@ def format_chat_message(role, content):
|
|
| 39 |
"""
|
| 40 |
|
| 41 |
|
| 42 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
return f"""
|
| 44 |
<div class="metrics-panel">
|
| 45 |
-
<div class="metric-section
|
| 46 |
-
<h3>
|
| 47 |
-
<div class="score-display">{
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
</div>
|
| 49 |
<div class="metric-section">
|
| 50 |
<h3>Explanation</h3>
|
| 51 |
-
<div class="explanation-text">{
|
| 52 |
</div>
|
| 53 |
</div>
|
| 54 |
"""
|
| 55 |
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
.
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
.
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
text-transform: uppercase;
|
| 126 |
-
letter-spacing: 0.05em;
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
.system-role {
|
| 130 |
-
background-color: #8e44ad;
|
| 131 |
-
color: white;
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
.user-role {
|
| 135 |
-
background-color: #3498db;
|
| 136 |
-
color: white;
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
.assistant-role {
|
| 140 |
-
background-color: #27ae60;
|
| 141 |
-
color: white;
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
.content {
|
| 145 |
-
white-space: pre-wrap;
|
| 146 |
-
word-break: break-word;
|
| 147 |
-
color: #f5f6fa;
|
| 148 |
-
line-height: 1.5;
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
h3 {
|
| 152 |
-
color: #63B3ED;
|
| 153 |
-
margin: 0 0 1rem 0;
|
| 154 |
-
font-size: 1.1rem;
|
| 155 |
-
font-weight: 500;
|
| 156 |
-
letter-spacing: 0.05em;
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
-
.score-section {
|
| 160 |
-
text-align: center;
|
| 161 |
-
}
|
| 162 |
-
|
| 163 |
-
.score-display {
|
| 164 |
-
font-size: 3rem;
|
| 165 |
-
font-weight: bold;
|
| 166 |
-
color: #4ADE80;
|
| 167 |
-
line-height: 1;
|
| 168 |
-
margin: 0.5rem 0;
|
| 169 |
-
}
|
| 170 |
-
|
| 171 |
-
.explanation-text {
|
| 172 |
-
color: #E2E8F0;
|
| 173 |
-
line-height: 1.6;
|
| 174 |
-
font-size: 0.95rem;
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
.title {
|
| 178 |
-
color: #63B3ED;
|
| 179 |
-
font-size: 2rem;
|
| 180 |
-
font-weight: bold;
|
| 181 |
-
text-align: center;
|
| 182 |
-
margin-bottom: 1.5rem;
|
| 183 |
-
padding: 1rem;
|
| 184 |
-
}
|
| 185 |
-
|
| 186 |
-
/* Custom scrollbar */
|
| 187 |
-
::-webkit-scrollbar {
|
| 188 |
-
width: 8px;
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
::-webkit-scrollbar-track {
|
| 192 |
-
background: rgba(255, 255, 255, 0.1);
|
| 193 |
-
border-radius: 4px;
|
| 194 |
-
}
|
| 195 |
-
|
| 196 |
-
::-webkit-scrollbar-thumb {
|
| 197 |
-
background: linear-gradient(45deg, #3498db, #2ecc71);
|
| 198 |
-
border-radius: 4px;
|
| 199 |
-
}
|
| 200 |
-
"""
|
| 201 |
-
|
| 202 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
| 203 |
-
gr.HTML('<div class="title">Chat Visualization</div>')
|
| 204 |
-
|
| 205 |
-
with gr.Row(elem_classes=["container"]):
|
| 206 |
-
chat_display = gr.HTML(elem_classes=["chat-panel"])
|
| 207 |
-
metrics_display = gr.HTML(elem_classes=["metrics-panel"])
|
| 208 |
-
|
| 209 |
-
# Show initial data on load
|
| 210 |
-
demo.load(fn=display_chat, inputs=None, outputs=[chat_display, metrics_display])
|
| 211 |
-
|
| 212 |
-
if __name__ == "__main__":
|
| 213 |
-
demo.launch()
|
|
|
|
| 1 |
+
# chat.py
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
import promptquality as pq
|
| 8 |
+
|
| 9 |
+
project_name = "agent-lb-v1"
|
| 10 |
+
PROJECT_ID = pq.get_project_from_name(project_name).id
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@lru_cache(maxsize=1000)
|
| 14 |
+
def get_model_score_for_dataset(model, dataset):
|
| 15 |
+
print(f"Getting metrics for {model} {project_name} for dataset {dataset}")
|
| 16 |
+
run_name = f"{model} {dataset}"
|
| 17 |
+
run_id = pq.get_run_from_name(run_name, PROJECT_ID).id
|
| 18 |
+
rows = pq.get_rows(
|
| 19 |
+
project_id=PROJECT_ID,
|
| 20 |
+
run_id=run_id,
|
| 21 |
+
task_type=None,
|
| 22 |
+
config=None,
|
| 23 |
+
starting_token=0,
|
| 24 |
+
limit=1000,
|
| 25 |
+
)
|
| 26 |
|
| 27 |
+
rationales = [d.metrics.tool_selection_quality_rationale for d in rows]
|
| 28 |
+
scores = [
|
| 29 |
+
round(d.metrics.tool_selection_quality, 2)
|
| 30 |
+
for d, rationale in zip(rows, rationales)
|
| 31 |
+
if rationale
|
| 32 |
+
]
|
| 33 |
+
explanations = [
|
| 34 |
+
d.metrics.tool_selection_quality_explanation
|
| 35 |
+
for d, rationale in zip(rows, rationales)
|
| 36 |
+
if rationale
|
| 37 |
+
]
|
| 38 |
+
rationales = [r for r in rationales if r]
|
| 39 |
+
mean_score = round(np.mean(scores), 2)
|
| 40 |
+
return {
|
| 41 |
+
"mean_score": mean_score,
|
| 42 |
+
"scores": scores,
|
| 43 |
+
"rationales": rationales,
|
| 44 |
+
"explanations": explanations,
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_updated_df(df, data):
|
| 49 |
+
df["rationale"] = data["rationales"]
|
| 50 |
+
df["explanation"] = data["explanations"]
|
| 51 |
+
df["score"] = data["scores"]
|
| 52 |
+
return df
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_chat_and_score_df(model, dataset):
|
| 56 |
+
data = get_model_score_for_dataset(model, dataset)
|
| 57 |
+
df = pd.read_parquet(f"datasets/{dataset}.parquet")
|
| 58 |
+
df = get_updated_df(df, data)
|
| 59 |
+
return df
|
| 60 |
|
| 61 |
|
| 62 |
def format_chat_message(role, content):
|
| 63 |
+
"""Format individual chat messages with proper styling."""
|
| 64 |
role_style = role.lower()
|
| 65 |
return f"""
|
| 66 |
<div class="message {role_style}">
|
|
|
|
| 70 |
"""
|
| 71 |
|
| 72 |
|
| 73 |
+
def format_tool_info(tools):
|
| 74 |
+
"""Format tool information with proper styling."""
|
| 75 |
+
if isinstance(tools, str):
|
| 76 |
+
try:
|
| 77 |
+
tools = json.loads(tools)
|
| 78 |
+
except:
|
| 79 |
+
return "<div>No tool information available</div>"
|
| 80 |
+
|
| 81 |
+
if not tools:
|
| 82 |
+
return "<div>No tool information available</div>"
|
| 83 |
+
|
| 84 |
+
tool_html = ""
|
| 85 |
+
for tool in tools:
|
| 86 |
+
tool_html += f"""
|
| 87 |
+
<div class="tool-section">
|
| 88 |
+
<div class="tool-name">{tool.get('name', 'Unnamed Tool')}</div>
|
| 89 |
+
<div class="tool-description">{tool.get('description', 'No description available')}</div>
|
| 90 |
+
<div class="tool-parameters">
|
| 91 |
+
{format_parameters(tool.get('parameters', {}))}
|
| 92 |
+
</div>
|
| 93 |
+
</div>
|
| 94 |
+
"""
|
| 95 |
+
return f'<div class="tool-info-panel">{tool_html}</div>'
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def format_parameters(parameters):
|
| 99 |
+
if not parameters:
|
| 100 |
+
return "<div>No parameters</div>"
|
| 101 |
+
|
| 102 |
+
params_html = ""
|
| 103 |
+
for name, desc in parameters.items():
|
| 104 |
+
params_html += f"""
|
| 105 |
+
<div class="parameter">
|
| 106 |
+
<span class="param-name">{name}:</span> {desc}
|
| 107 |
+
</div>
|
| 108 |
+
"""
|
| 109 |
+
return params_html
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def format_metrics(score, rationale, explanation):
|
| 113 |
+
"""Format metrics display with proper styling."""
|
| 114 |
return f"""
|
| 115 |
<div class="metrics-panel">
|
| 116 |
+
<div class="metric-section">
|
| 117 |
+
<h3>Score</h3>
|
| 118 |
+
<div class="score-display">{score:.2f}</div>
|
| 119 |
+
</div>
|
| 120 |
+
<div class="metric-section">
|
| 121 |
+
<h3>Rationale</h3>
|
| 122 |
+
<div class="explanation-text">{rationale}</div>
|
| 123 |
</div>
|
| 124 |
<div class="metric-section">
|
| 125 |
<h3>Explanation</h3>
|
| 126 |
+
<div class="explanation-text">{explanation}</div>
|
| 127 |
</div>
|
| 128 |
</div>
|
| 129 |
"""
|
| 130 |
|
| 131 |
|
| 132 |
+
def update_chat_display(df, index):
|
| 133 |
+
"""Update the chat visualization for a specific index."""
|
| 134 |
+
if df is None or df.empty or index >= len(df):
|
| 135 |
+
return (
|
| 136 |
+
"<div>No data available</div>",
|
| 137 |
+
"<div>No metrics available</div>",
|
| 138 |
+
"<div>No tool information available</div>",
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
row = df.iloc[index]
|
| 142 |
+
|
| 143 |
+
# Format chat messages
|
| 144 |
+
messages = json.loads(row["conversation"])
|
| 145 |
+
chat_html = f"""
|
| 146 |
+
<div class="chat-panel">
|
| 147 |
+
{"".join([format_chat_message(msg["role"], msg["content"])
|
| 148 |
+
for msg in messages])}
|
| 149 |
+
</div>
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
# Format metrics
|
| 153 |
+
metrics_html = format_metrics(row["score"], row["rationale"], row["explanation"])
|
| 154 |
+
|
| 155 |
+
# Format tool info
|
| 156 |
+
tool_html = format_tool_info(row["tools_langchain"])
|
| 157 |
+
|
| 158 |
+
return chat_html, metrics_html, tool_html
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def filter_and_update_display(model, dataset, selected_scores, current_index):
|
| 162 |
+
try:
|
| 163 |
+
# Get data and filter by scores
|
| 164 |
+
df_chat = get_chat_and_score_df(model, dataset)
|
| 165 |
+
if selected_scores:
|
| 166 |
+
df_chat = df_chat[df_chat["score"].isin(selected_scores)]
|
| 167 |
+
|
| 168 |
+
if df_chat.empty:
|
| 169 |
+
return (
|
| 170 |
+
"<div>No data available for selected filters</div>",
|
| 171 |
+
"<div>No metrics available</div>",
|
| 172 |
+
"<div>No tool information available</div>",
|
| 173 |
+
gr.update(maximum=0, value=0),
|
| 174 |
+
"0/0",
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Update index bounds
|
| 178 |
+
max_index = len(df_chat) - 1
|
| 179 |
+
current_index = min(current_index, max_index)
|
| 180 |
+
|
| 181 |
+
# Get displays for current index
|
| 182 |
+
chat_html, metrics_html, tool_html = update_chat_display(df_chat, current_index)
|
| 183 |
+
|
| 184 |
+
return (
|
| 185 |
+
chat_html,
|
| 186 |
+
metrics_html,
|
| 187 |
+
tool_html,
|
| 188 |
+
gr.update(maximum=max_index, value=current_index),
|
| 189 |
+
f"{current_index + 1}/{len(df_chat)}",
|
| 190 |
+
)
|
| 191 |
+
except Exception as e:
|
| 192 |
+
print(f"Error in filter_and_update_display: {str(e)}")
|
| 193 |
+
return (
|
| 194 |
+
f"<div>Error: {str(e)}</div>",
|
| 195 |
+
"<div>No metrics available</div>",
|
| 196 |
+
"<div>No tool information available</div>",
|
| 197 |
+
gr.update(maximum=0, value=0),
|
| 198 |
+
"0/0",
|
| 199 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_loader.py
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
def load_data():
|
| 5 |
"""Load and preprocess the data."""
|
| 6 |
df = pd.read_csv("results.csv").dropna()
|
|
@@ -34,11 +40,281 @@ CATEGORIES = {
|
|
| 34 |
"Composite": ["BFCL_v3_multi_turn_composite"],
|
| 35 |
}
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
HEADER_CONTENT = """
|
| 38 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
.header-wrapper {
|
| 40 |
padding: 3rem 2rem;
|
| 41 |
-
background:
|
| 42 |
border-radius: 16px;
|
| 43 |
display: flex;
|
| 44 |
flex-direction: column;
|
|
@@ -47,12 +323,12 @@ HEADER_CONTENT = """
|
|
| 47 |
}
|
| 48 |
|
| 49 |
.header-wrapper a {
|
| 50 |
-
color:
|
| 51 |
text-decoration: none !important;
|
| 52 |
}
|
| 53 |
|
| 54 |
.description {
|
| 55 |
-
color:
|
| 56 |
font-size: 1.1rem;
|
| 57 |
line-height: 1.6;
|
| 58 |
max-width: 800px;
|
|
@@ -65,7 +341,7 @@ HEADER_CONTENT = """
|
|
| 65 |
gap: 1rem;
|
| 66 |
justify-content: center;
|
| 67 |
margin-bottom: 2rem;
|
| 68 |
-
color:
|
| 69 |
}
|
| 70 |
|
| 71 |
.action-button {
|
|
@@ -73,23 +349,23 @@ HEADER_CONTENT = """
|
|
| 73 |
align-items: center;
|
| 74 |
gap: 0.5rem;
|
| 75 |
padding: 0.75rem 1.5rem;
|
| 76 |
-
background:
|
| 77 |
-
border: 1px solid
|
| 78 |
border-radius: 100px;
|
| 79 |
-
color:
|
| 80 |
text-decoration: none !important;
|
| 81 |
font-size: 0.95rem;
|
| 82 |
transition: all 0.2s ease;
|
| 83 |
}
|
| 84 |
|
| 85 |
.action-button:hover {
|
| 86 |
-
background:
|
| 87 |
-
border-color:
|
| 88 |
-
color:
|
| 89 |
}
|
| 90 |
|
| 91 |
.update-info {
|
| 92 |
-
color:
|
| 93 |
font-size: 0.9rem;
|
| 94 |
margin-bottom: 3rem;
|
| 95 |
}
|
|
@@ -103,15 +379,15 @@ HEADER_CONTENT = """
|
|
| 103 |
}
|
| 104 |
|
| 105 |
.feature-card {
|
| 106 |
-
background:
|
| 107 |
-
border: 1px solid
|
| 108 |
border-radius: 16px;
|
| 109 |
padding: 2rem;
|
| 110 |
text-align: left;
|
| 111 |
}
|
| 112 |
|
| 113 |
.feature-icon {
|
| 114 |
-
background:
|
| 115 |
width: 40px;
|
| 116 |
height: 40px;
|
| 117 |
border-radius: 12px;
|
|
@@ -122,14 +398,14 @@ HEADER_CONTENT = """
|
|
| 122 |
}
|
| 123 |
|
| 124 |
.feature-title {
|
| 125 |
-
color:
|
| 126 |
font-size: 1.25rem;
|
| 127 |
font-weight: 600;
|
| 128 |
margin-bottom: 1rem;
|
| 129 |
}
|
| 130 |
|
| 131 |
.feature-description {
|
| 132 |
-
color:
|
| 133 |
font-size: 0.95rem;
|
| 134 |
margin-bottom: 1.5rem;
|
| 135 |
}
|
|
@@ -144,7 +420,7 @@ HEADER_CONTENT = """
|
|
| 144 |
}
|
| 145 |
|
| 146 |
.feature-list li {
|
| 147 |
-
color:
|
| 148 |
font-size: 0.95rem;
|
| 149 |
display: flex;
|
| 150 |
align-items: center;
|
|
@@ -155,89 +431,100 @@ HEADER_CONTENT = """
|
|
| 155 |
content: '';
|
| 156 |
width: 6px;
|
| 157 |
height: 6px;
|
| 158 |
-
background:
|
| 159 |
border-radius: 50%;
|
| 160 |
flex-shrink: 0;
|
| 161 |
}
|
| 162 |
|
| 163 |
-
/* Force all links to
|
| 164 |
.header-wrapper a:link,
|
| 165 |
.header-wrapper a:visited,
|
| 166 |
.header-wrapper a:hover,
|
| 167 |
.header-wrapper a:active {
|
| 168 |
-
color:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
}
|
| 170 |
</style>
|
| 171 |
|
| 172 |
<div class="header-wrapper">
|
| 173 |
-
<h1 class="title"
|
| 174 |
-
<h2>Comprehensive multi-benchmark evaluation for tool calling</h2>
|
| 175 |
-
|
| 176 |
-
<div class="actions">
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
</div>
|
| 199 |
"""
|
| 200 |
|
| 201 |
CARDS = """
|
| 202 |
<div class="features-grid">
|
| 203 |
<div class="feature-card">
|
| 204 |
<div class="feature-icon">
|
| 205 |
-
<svg width="24" height="24" fill="none" stroke="
|
| 206 |
-
<path d="
|
| 207 |
</svg>
|
| 208 |
</div>
|
| 209 |
-
<h3 class="feature-title">
|
| 210 |
-
<p class="feature-description">Comprehensive evaluation across multiple benchmarks and domains:</p>
|
| 211 |
<ul class="feature-list">
|
| 212 |
-
<li>
|
| 213 |
-
<li>
|
| 214 |
-
<li>
|
| 215 |
</ul>
|
| 216 |
</div>
|
| 217 |
-
|
| 218 |
<div class="feature-card">
|
| 219 |
<div class="feature-icon">
|
| 220 |
-
<svg width="24" height="24" fill="none" stroke="
|
| 221 |
-
<path d="
|
| 222 |
</svg>
|
| 223 |
</div>
|
| 224 |
-
<h3 class="feature-title">
|
| 225 |
-
<p class="feature-description">Beyond technical metrics, we provide:</p>
|
| 226 |
<ul class="feature-list">
|
| 227 |
-
<li>
|
| 228 |
-
<li>
|
| 229 |
-
<li>
|
| 230 |
</ul>
|
| 231 |
</div>
|
| 232 |
|
| 233 |
<div class="feature-card">
|
| 234 |
<div class="feature-icon">
|
| 235 |
-
<svg width="24" height="24" fill="none" stroke="
|
| 236 |
<path d="M21 2v6h-6M3 12a9 9 0 0 1 15-6.7L21 8M3 12a9 9 0 0 0 15 6.7L21 16M21 22v-6h-6"/>
|
| 237 |
</svg>
|
| 238 |
</div>
|
| 239 |
<h3 class="feature-title">Updated Periodically</h3>
|
| 240 |
-
<p class="feature-description">Regular updates with latest models:</p>
|
| 241 |
<ul class="feature-list">
|
| 242 |
<li>11 private models evaluated</li>
|
| 243 |
<li>5 open source models included</li>
|
|
@@ -245,48 +532,107 @@ CARDS = """
|
|
| 245 |
</ul>
|
| 246 |
</div>
|
| 247 |
</div>
|
|
|
|
| 248 |
</div>
|
| 249 |
"""
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
"""
|
| 277 |
-
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
from glob import glob
|
| 3 |
+
import numpy as np
|
| 4 |
+
from pathlib import Path
|
| 5 |
|
| 6 |
|
| 7 |
+
DATASETS = [Path(file).stem for file in glob("datasets/*.parquet")]
|
| 8 |
+
SCORES = [round(x, 2) for x in np.arange(0, 1.1, 0.1).tolist()]
|
| 9 |
+
|
| 10 |
def load_data():
|
| 11 |
"""Load and preprocess the data."""
|
| 12 |
df = pd.read_csv("results.csv").dropna()
|
|
|
|
| 40 |
"Composite": ["BFCL_v3_multi_turn_composite"],
|
| 41 |
}
|
| 42 |
|
| 43 |
+
METHODOLOGY = """# Methodology
|
| 44 |
+
## Overview
|
| 45 |
+
The Agent Leaderboard evaluates language models' ability to effectively use tools and maintain coherent multi-turn conversations.
|
| 46 |
+
The evaluation focuses on both basic functionality and edge cases that challenge real-world applicability.
|
| 47 |
+
|
| 48 |
+
## Tool Selection Quality Metric
|
| 49 |
+
Models are evaluated on their ability to:
|
| 50 |
+
- Correctly identify when tools are needed
|
| 51 |
+
- Select the appropriate tool for the task
|
| 52 |
+
- Handle cases where no suitable tool exists
|
| 53 |
+
- Maintain context across multiple interactions
|
| 54 |
+
|
| 55 |
+
## Dataset Structure
|
| 56 |
+
| Type | Samples | Category | Dataset Name | Purpose |
|
| 57 |
+
|------|---------|-----------|--------------|----------|
|
| 58 |
+
| Single-Turn | 100 + 100 | Single Function Call | xlam_single_tool_single_call | Evaluates basic ability to read documentation and make single function calls |
|
| 59 |
+
| | 200 + 50 | Multiple Function Call | xlam_multiple_tool_multiple_call, xlam_single_tool_multiple_call | Tests parallel execution and result aggregation capabilities |
|
| 60 |
+
| | 100 | Irrelevant Query | BFCL_v3_irrelevance | Tests ability to recognize when available tools don't match user needs |
|
| 61 |
+
| | 100 | Long Context | tau_long_context | Assesses handling of extended interactions and complex instructions |
|
| 62 |
+
| Multi-Turn | 50 + 30 | Single Function Call | BFCL_v3_multi_turn_base_single_func_call, toolscs_single_func_call | Tests basic conversational function calling abilities |
|
| 63 |
+
| | 50 | Multiple Function Call | BFCL_v3_multi_turn_base_multi_func_call | Evaluates handling of multiple function calls in conversation |
|
| 64 |
+
| | 100 | Missing Function | BFCL_v3_multi_turn_miss_func | Tests graceful handling of unavailable tools |
|
| 65 |
+
| | 100 | Missing Parameters | BFCL_v3_multi_turn_miss_param | Assesses parameter collection and handling incomplete information |
|
| 66 |
+
| | 100 | Composite | BFCL_v3_multi_turn_composite | Tests overall robustness in complex scenarios |
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
INSIGHTS = """
|
| 71 |
+
# Key Insights from Agent Leaderboard
|
| 72 |
+
|
| 73 |
+
| Category | Finding | Implications |
|
| 74 |
+
|----------|---------|--------------|
|
| 75 |
+
| Performance Leader | Gemini-2.0-flash dominates with excellent performance at a fraction of typical costs | Demonstrates that top-tier performance is achievable without premium pricing |
|
| 76 |
+
| Cost vs Performance | Top 3 models span a 200x price difference yet show only 6% performance gap | Challenges traditional pricing assumptions in the market and suggests potential overpricing at the high end |
|
| 77 |
+
| Open Source Models | Qwen-72b matches premium models in safety and context handling at lower cost | Signals growing maturity in open-source models and potential for broader adoption |
|
| 78 |
+
| Safety Features | While irrelevance detection is widely solved, tool miss detection remains a challenge | Highlights uneven development in safety features and areas needing focused improvement |
|
| 79 |
+
| Edge Case Handling | Models still struggle with maintaining context in complex scenarios | Indicates need for architectural improvements in handling sophisticated interactions |
|
| 80 |
+
| Architecture Impact | Models show clear trade-offs between context handling and parallel execution | Suggests need for specialized models or hybrid approaches for different use cases |
|
| 81 |
+
|
| 82 |
+
**Note:** Findings based on comprehensive evaluation across multiple tasks and scenarios.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
chat_css = """
|
| 87 |
+
/* Container styles */
|
| 88 |
+
.container {
|
| 89 |
+
display: flex;
|
| 90 |
+
gap: 1.5rem;
|
| 91 |
+
height: calc(100vh - 100px);
|
| 92 |
+
padding: 1rem;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
/* Chat panel styles */
|
| 96 |
+
.chat-panel {
|
| 97 |
+
flex: 2;
|
| 98 |
+
background: #1a1f2c;
|
| 99 |
+
border-radius: 1rem;
|
| 100 |
+
padding: 1rem;
|
| 101 |
+
overflow-y: auto;
|
| 102 |
+
max-height: calc(100vh - 120px);
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
/* Message styles */
|
| 106 |
+
.message {
|
| 107 |
+
padding: 1.2rem;
|
| 108 |
+
margin: 0.8rem;
|
| 109 |
+
border-radius: 1rem;
|
| 110 |
+
font-family: monospace;
|
| 111 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
.system {
|
| 115 |
+
background: linear-gradient(135deg, #8e44ad, #9b59b6);
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
.user {
|
| 119 |
+
background: linear-gradient(135deg, #2c3e50, #3498db);
|
| 120 |
+
margin-left: 2rem;
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
.assistant {
|
| 124 |
+
background: linear-gradient(135deg, #27ae60, #2ecc71);
|
| 125 |
+
margin-right: 2rem;
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
.role-badge {
|
| 129 |
+
display: inline-block;
|
| 130 |
+
padding: 0.3rem 0.8rem;
|
| 131 |
+
border-radius: 0.5rem;
|
| 132 |
+
font-weight: bold;
|
| 133 |
+
margin-bottom: 0.8rem;
|
| 134 |
+
font-size: 0.9rem;
|
| 135 |
+
text-transform: uppercase;
|
| 136 |
+
letter-spacing: 0.05em;
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
.system-role {
|
| 140 |
+
background-color: #8e44ad;
|
| 141 |
+
color: white;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.user-role {
|
| 145 |
+
background-color: #3498db;
|
| 146 |
+
color: white;
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
.assistant-role {
|
| 150 |
+
background-color: #27ae60;
|
| 151 |
+
color: white;
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
.content {
|
| 155 |
+
white-space: pre-wrap;
|
| 156 |
+
word-break: break-word;
|
| 157 |
+
color: #f5f6fa;
|
| 158 |
+
line-height: 1.5;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
/* Metrics panel styles */
|
| 162 |
+
.metrics-panel {
|
| 163 |
+
flex: 1;
|
| 164 |
+
display: flex;
|
| 165 |
+
flex-direction: column;
|
| 166 |
+
gap: 2rem;
|
| 167 |
+
padding: 1.5rem;
|
| 168 |
+
background: #1a1f2c;
|
| 169 |
+
border-radius: 1rem;
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
.metric-section {
|
| 173 |
+
background: #1E293B;
|
| 174 |
+
padding: 1.5rem;
|
| 175 |
+
border-radius: 1rem;
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
.score-section {
|
| 179 |
+
text-align: center;
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
.score-display {
|
| 183 |
+
font-size: 3rem;
|
| 184 |
+
font-weight: bold;
|
| 185 |
+
color: #4ADE80;
|
| 186 |
+
line-height: 1;
|
| 187 |
+
margin: 0.5rem 0;
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
.explanation-text {
|
| 191 |
+
color: #E2E8F0;
|
| 192 |
+
line-height: 1.6;
|
| 193 |
+
font-size: 0.95rem;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
/* Tool info panel styles */
|
| 197 |
+
.tool-info-panel {
|
| 198 |
+
background: #1a1f2c;
|
| 199 |
+
padding: 1.5rem;
|
| 200 |
+
border-radius: 1rem;
|
| 201 |
+
color: #f5f6fa;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.tool-section {
|
| 205 |
+
margin-bottom: 1.5rem;
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
.tool-name {
|
| 209 |
+
font-size: 1.2rem;
|
| 210 |
+
color: #4ADE80;
|
| 211 |
+
font-weight: bold;
|
| 212 |
+
margin-bottom: 0.5rem;
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
.tool-description {
|
| 216 |
+
color: #E2E8F0;
|
| 217 |
+
line-height: 1.6;
|
| 218 |
+
margin-bottom: 1rem;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
.tool-parameters .parameter {
|
| 222 |
+
margin: 0.5rem 0;
|
| 223 |
+
padding: 0.5rem;
|
| 224 |
+
background: rgba(255, 255, 255, 0.05);
|
| 225 |
+
border-radius: 0.5rem;
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
.param-name {
|
| 229 |
+
color: #63B3ED;
|
| 230 |
+
font-weight: bold;
|
| 231 |
+
margin-right: 0.5rem;
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
.tool-examples .example {
|
| 235 |
+
margin: 0.5rem 0;
|
| 236 |
+
padding: 0.5rem;
|
| 237 |
+
background: rgba(255, 255, 255, 0.05);
|
| 238 |
+
border-radius: 0.5rem;
|
| 239 |
+
font-family: monospace;
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
/* Custom scrollbar */
|
| 243 |
+
::-webkit-scrollbar {
|
| 244 |
+
width: 8px;
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
::-webkit-scrollbar-track {
|
| 248 |
+
background: rgba(255, 255, 255, 0.1);
|
| 249 |
+
border-radius: 4px;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
::-webkit-scrollbar-thumb {
|
| 253 |
+
background: linear-gradient(45deg, #3498db, #2ecc71);
|
| 254 |
+
border-radius: 4px;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
/* Title styles */
|
| 258 |
+
.title {
|
| 259 |
+
color: #63B3ED;
|
| 260 |
+
font-size: 2rem;
|
| 261 |
+
font-weight: bold;
|
| 262 |
+
text-align: center;
|
| 263 |
+
margin-bottom: 1.5rem;
|
| 264 |
+
padding: 1rem;
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
/* Headers */
|
| 269 |
+
h3 {
|
| 270 |
+
color: #63B3ED;
|
| 271 |
+
margin: 0 0 1rem 0;
|
| 272 |
+
font-size: 1.1rem;
|
| 273 |
+
font-weight: 500;
|
| 274 |
+
letter-spacing: 0.05em;
|
| 275 |
+
}
|
| 276 |
+
"""
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# Updated header and cards with theme awareness
|
| 280 |
+
|
| 281 |
HEADER_CONTENT = """
|
| 282 |
<style>
|
| 283 |
+
@media (prefers-color-scheme: dark) {
|
| 284 |
+
:root {
|
| 285 |
+
--bg-primary: rgb(17, 17, 27);
|
| 286 |
+
--bg-secondary: rgba(30, 30, 45, 0.95);
|
| 287 |
+
--bg-hover: rgba(40, 40, 55, 0.95);
|
| 288 |
+
--text-primary: #ffffff;
|
| 289 |
+
--text-secondary: #94a3b8;
|
| 290 |
+
--text-tertiary: #e2e8f0;
|
| 291 |
+
--border-color: rgba(255, 255, 255, 0.1);
|
| 292 |
+
--border-hover: rgba(255, 255, 255, 0.2);
|
| 293 |
+
--card-bg: rgba(17, 17, 27, 0.6);
|
| 294 |
+
--accent-color: #4F46E5;
|
| 295 |
+
--accent-bg: rgba(79, 70, 229, 0.1);
|
| 296 |
+
}
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
@media (prefers-color-scheme: light) {
|
| 300 |
+
:root {
|
| 301 |
+
--bg-primary: rgb(255, 255, 255);
|
| 302 |
+
--bg-secondary: rgba(243, 244, 246, 0.95);
|
| 303 |
+
--bg-hover: rgba(229, 231, 235, 0.95);
|
| 304 |
+
--text-primary: #000000;
|
| 305 |
+
--text-secondary: #4b5563;
|
| 306 |
+
--text-tertiary: #1f2937;
|
| 307 |
+
--border-color: rgba(0, 0, 0, 0.1);
|
| 308 |
+
--border-hover: rgba(0, 0, 0, 0.2);
|
| 309 |
+
--card-bg: rgba(249, 250, 251, 0.6);
|
| 310 |
+
--accent-color: #4F46E5;
|
| 311 |
+
--accent-bg: rgba(79, 70, 229, 0.1);
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
.header-wrapper {
|
| 316 |
padding: 3rem 2rem;
|
| 317 |
+
background: var(--bg-primary);
|
| 318 |
border-radius: 16px;
|
| 319 |
display: flex;
|
| 320 |
flex-direction: column;
|
|
|
|
| 323 |
}
|
| 324 |
|
| 325 |
.header-wrapper a {
|
| 326 |
+
color: var(--text-primary) !important;
|
| 327 |
text-decoration: none !important;
|
| 328 |
}
|
| 329 |
|
| 330 |
.description {
|
| 331 |
+
color: var(--text-primary);
|
| 332 |
font-size: 1.1rem;
|
| 333 |
line-height: 1.6;
|
| 334 |
max-width: 800px;
|
|
|
|
| 341 |
gap: 1rem;
|
| 342 |
justify-content: center;
|
| 343 |
margin-bottom: 2rem;
|
| 344 |
+
color: var(--text-primary);
|
| 345 |
}
|
| 346 |
|
| 347 |
.action-button {
|
|
|
|
| 349 |
align-items: center;
|
| 350 |
gap: 0.5rem;
|
| 351 |
padding: 0.75rem 1.5rem;
|
| 352 |
+
background: var(--bg-secondary);
|
| 353 |
+
border: 1px solid var(--border-color);
|
| 354 |
border-radius: 100px;
|
| 355 |
+
color: var(--text-primary) !important;
|
| 356 |
text-decoration: none !important;
|
| 357 |
font-size: 0.95rem;
|
| 358 |
transition: all 0.2s ease;
|
| 359 |
}
|
| 360 |
|
| 361 |
.action-button:hover {
|
| 362 |
+
background: var(--bg-hover);
|
| 363 |
+
border-color: var(--border-hover);
|
| 364 |
+
color: var(--text-primary) !important;
|
| 365 |
}
|
| 366 |
|
| 367 |
.update-info {
|
| 368 |
+
color: var(--text-secondary);
|
| 369 |
font-size: 0.9rem;
|
| 370 |
margin-bottom: 3rem;
|
| 371 |
}
|
|
|
|
| 379 |
}
|
| 380 |
|
| 381 |
.feature-card {
|
| 382 |
+
background: var(--card-bg);
|
| 383 |
+
border: 1px solid var(--border-color);
|
| 384 |
border-radius: 16px;
|
| 385 |
padding: 2rem;
|
| 386 |
text-align: left;
|
| 387 |
}
|
| 388 |
|
| 389 |
.feature-icon {
|
| 390 |
+
background: var(--accent-bg);
|
| 391 |
width: 40px;
|
| 392 |
height: 40px;
|
| 393 |
border-radius: 12px;
|
|
|
|
| 398 |
}
|
| 399 |
|
| 400 |
.feature-title {
|
| 401 |
+
color: var(--text-primary);
|
| 402 |
font-size: 1.25rem;
|
| 403 |
font-weight: 600;
|
| 404 |
margin-bottom: 1rem;
|
| 405 |
}
|
| 406 |
|
| 407 |
.feature-description {
|
| 408 |
+
color: var(--text-secondary);
|
| 409 |
font-size: 0.95rem;
|
| 410 |
margin-bottom: 1.5rem;
|
| 411 |
}
|
|
|
|
| 420 |
}
|
| 421 |
|
| 422 |
.feature-list li {
|
| 423 |
+
color: var(--text-tertiary);
|
| 424 |
font-size: 0.95rem;
|
| 425 |
display: flex;
|
| 426 |
align-items: center;
|
|
|
|
| 431 |
content: '';
|
| 432 |
width: 6px;
|
| 433 |
height: 6px;
|
| 434 |
+
background: var(--accent-color);
|
| 435 |
border-radius: 50%;
|
| 436 |
flex-shrink: 0;
|
| 437 |
}
|
| 438 |
|
| 439 |
+
/* Force all links to match theme */
|
| 440 |
.header-wrapper a:link,
|
| 441 |
.header-wrapper a:visited,
|
| 442 |
.header-wrapper a:hover,
|
| 443 |
.header-wrapper a:active {
|
| 444 |
+
color: var(--text-primary) !important;
|
| 445 |
+
}
|
| 446 |
+
|
| 447 |
+
/* Title specific styles */
|
| 448 |
+
.main-title {
|
| 449 |
+
color: var(--text-primary);
|
| 450 |
+
font-size: 48px;
|
| 451 |
+
font-weight: 700;
|
| 452 |
+
margin: 40px 0;
|
| 453 |
+
text-align: center;
|
| 454 |
+
}
|
| 455 |
+
|
| 456 |
+
.subtitle {
|
| 457 |
+
color: var(--text-secondary);
|
| 458 |
+
margin-bottom: 2rem;
|
| 459 |
}
|
| 460 |
</style>
|
| 461 |
|
| 462 |
<div class="header-wrapper">
|
| 463 |
+
<h1 class="main-title">Agent Leaderboard</h1>
|
| 464 |
+
<h2 class="subtitle">Comprehensive multi-benchmark evaluation for tool calling</h2>
|
| 465 |
+
|
| 466 |
+
<div class="actions">
|
| 467 |
+
<a href="#" class="action-button">
|
| 468 |
+
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
|
| 469 |
+
<path d="M15 7h3a5 5 0 0 1 5 5 5 5 0 0 1-5 5h-3m-6 0H6a5 5 0 0 1-5-5 5 5 0 0 1 5-5h3"/>
|
| 470 |
+
<line x1="8" y1="12" x2="16" y2="12"/>
|
| 471 |
+
</svg>
|
| 472 |
+
Blog
|
| 473 |
+
</a>
|
| 474 |
+
<a href="#" class="action-button">
|
| 475 |
+
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
|
| 476 |
+
<path d="M9 19c-5 1.5-5-2.5-7-3m14 6v-3.87a3.37 3.37 0 0 0-.94-2.61c3.14-.35 6.44-1.54 6.44-7A5.44 5.44 0 0 0 20 4.77 5.07 5.07 0 0 0 19.91 1S18.73.65 16 2.48a13.38 13.38 0 0 0-7 0C6.27.65 5.09 1 5.09 1A5.07 5.07 0 0 0 5 4.77a5.44 5.44 0 0 0-1.5 3.78c0 5.42 3.3 6.61 6.44 7A3.37 3.37 0 0 0 9 18.13V22"/>
|
| 477 |
+
</svg>
|
| 478 |
+
GitHub
|
| 479 |
+
</a>
|
| 480 |
+
<a href="#" class="action-button">
|
| 481 |
+
<svg width="20" height="20" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2">
|
| 482 |
+
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"/>
|
| 483 |
+
<polyline points="7 10 12 15 17 10"/>
|
| 484 |
+
<line x1="12" y1="15" x2="12" y2="3"/>
|
| 485 |
+
</svg>
|
| 486 |
+
Dataset
|
| 487 |
+
</a>
|
| 488 |
+
</div>
|
| 489 |
"""
|
| 490 |
|
| 491 |
CARDS = """
|
| 492 |
<div class="features-grid">
|
| 493 |
<div class="feature-card">
|
| 494 |
<div class="feature-icon">
|
| 495 |
+
<svg width="24" height="24" fill="none" stroke="var(--accent-color)" stroke-width="2" viewBox="0 0 24 24">
|
| 496 |
+
<path d="M22 12h-4l-3 9L9 3l-3 9H2"/>
|
| 497 |
</svg>
|
| 498 |
</div>
|
| 499 |
+
<h3 class="feature-title">Make Better Decisions</h3>
|
|
|
|
| 500 |
<ul class="feature-list">
|
| 501 |
+
<li>Cost-effectiveness analysis</li>
|
| 502 |
+
<li>Business impact metrics</li>
|
| 503 |
+
<li>Vendor strategy insights</li>
|
| 504 |
</ul>
|
| 505 |
</div>
|
| 506 |
+
|
| 507 |
<div class="feature-card">
|
| 508 |
<div class="feature-icon">
|
| 509 |
+
<svg width="24" height="24" fill="none" stroke="var(--accent-color)" stroke-width="2" viewBox="0 0 24 24">
|
| 510 |
+
<path d="M21 16V8a2 2 0 0 0-1-1.73l-7-4a2 2 0 0 0-2 0l-7 4A2 2 0 0 0 3 8v8a2 2 0 0 0 1 1.73l7 4a2 2 0 0 0 2 0l7-4A2 2 0 0 0 21 16z"/>
|
| 511 |
</svg>
|
| 512 |
</div>
|
| 513 |
+
<h3 class="feature-title">360° Domain Evaluation</h3>
|
|
|
|
| 514 |
<ul class="feature-list">
|
| 515 |
+
<li>Cross-domain evaluation</li>
|
| 516 |
+
<li>Real-world use cases</li>
|
| 517 |
+
<li>Edge case evaluation</li>
|
| 518 |
</ul>
|
| 519 |
</div>
|
| 520 |
|
| 521 |
<div class="feature-card">
|
| 522 |
<div class="feature-icon">
|
| 523 |
+
<svg width="24" height="24" fill="none" stroke="var(--accent-color)" stroke-width="2" viewBox="0 0 24 24">
|
| 524 |
<path d="M21 2v6h-6M3 12a9 9 0 0 1 15-6.7L21 8M3 12a9 9 0 0 0 15 6.7L21 16M21 22v-6h-6"/>
|
| 525 |
</svg>
|
| 526 |
</div>
|
| 527 |
<h3 class="feature-title">Updated Periodically</h3>
|
|
|
|
| 528 |
<ul class="feature-list">
|
| 529 |
<li>11 private models evaluated</li>
|
| 530 |
<li>5 open source models included</li>
|
|
|
|
| 532 |
</ul>
|
| 533 |
</div>
|
| 534 |
</div>
|
| 535 |
+
|
| 536 |
</div>
|
| 537 |
"""
|
| 538 |
|
| 539 |
+
DESCRIPTION_HTML = """
|
| 540 |
+
<div style="
|
| 541 |
+
background: var(--bg-secondary, rgba(30, 30, 45, 0.95));
|
| 542 |
+
border-radius: 12px;
|
| 543 |
+
padding: 24px;
|
| 544 |
+
margin: 16px 0;
|
| 545 |
+
">
|
| 546 |
+
<div style="
|
| 547 |
+
display: flex;
|
| 548 |
+
flex-direction: column;
|
| 549 |
+
gap: 16px;
|
| 550 |
+
">
|
| 551 |
+
<div style="
|
| 552 |
+
color: var(--text-primary);
|
| 553 |
+
font-size: 1.1rem;
|
| 554 |
+
font-weight: 500;
|
| 555 |
+
display: flex;
|
| 556 |
+
align-items: center;
|
| 557 |
+
gap: 8px;
|
| 558 |
+
">
|
| 559 |
+
🎯 Purpose
|
| 560 |
+
<span style="
|
| 561 |
+
background: var(--accent-color, #4F46E5);
|
| 562 |
+
color: white;
|
| 563 |
+
padding: 4px 12px;
|
| 564 |
+
border-radius: 100px;
|
| 565 |
+
font-size: 0.9rem;
|
| 566 |
+
">Latest Update: Feb 2025</span>
|
| 567 |
+
</div>
|
| 568 |
+
<p style="
|
| 569 |
+
color: var(--text-secondary);
|
| 570 |
+
margin: 0;
|
| 571 |
+
line-height: 1.6;
|
| 572 |
+
">
|
| 573 |
+
Welcome to the AI Agent Tool Calling Leaderboard! This comprehensive benchmark evaluates
|
| 574 |
+
language models' ability to effectively utilize tools and functions in complex scenarios.
|
| 575 |
+
</p>
|
| 576 |
|
| 577 |
+
<div style="
|
| 578 |
+
color: var(--text-primary);
|
| 579 |
+
font-size: 1.1rem;
|
| 580 |
+
font-weight: 500;
|
| 581 |
+
margin-top: 8px;
|
| 582 |
+
">
|
| 583 |
+
🔍 What We Evaluate
|
| 584 |
+
</div>
|
| 585 |
+
<div style="
|
| 586 |
+
display: grid;
|
| 587 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 588 |
+
gap: 16px;
|
| 589 |
+
color: var(--text-secondary);
|
| 590 |
+
">
|
| 591 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 592 |
+
🔄 Single/Multi-turn Interactions
|
| 593 |
+
</div>
|
| 594 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 595 |
+
🧩 Function Composition
|
| 596 |
+
</div>
|
| 597 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 598 |
+
⚡ Error Handling
|
| 599 |
+
</div>
|
| 600 |
+
</div>
|
|
|
|
|
|
|
| 601 |
|
| 602 |
+
<div style="
|
| 603 |
+
color: var(--text-primary);
|
| 604 |
+
font-size: 1.1rem;
|
| 605 |
+
font-weight: 500;
|
| 606 |
+
margin-top: 8px;
|
| 607 |
+
">
|
| 608 |
+
📊 Key Results
|
| 609 |
+
</div>
|
| 610 |
+
<div style="
|
| 611 |
+
display: grid;
|
| 612 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 613 |
+
gap: 16px;
|
| 614 |
+
color: var(--text-secondary);
|
| 615 |
+
">
|
| 616 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 617 |
+
✅ Accuracy Performance
|
| 618 |
+
</div>
|
| 619 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 620 |
+
💰 Open Vs Closed Source
|
| 621 |
+
</div>
|
| 622 |
+
<div style="display: flex; gap: 8px; align-items: center;">
|
| 623 |
+
⚖️ Overall Effectiveness
|
| 624 |
+
</div>
|
| 625 |
+
</div>
|
| 626 |
|
| 627 |
+
<div style="
|
| 628 |
+
border-left: 4px solid var(--accent-color, #4F46E5);
|
| 629 |
+
padding-left: 12px;
|
| 630 |
+
margin-top: 8px;
|
| 631 |
+
color: var(--text-secondary);
|
| 632 |
+
font-style: italic;
|
| 633 |
+
">
|
| 634 |
+
💡 Use the filters below to explore different aspects of the evaluation and compare model performance across various dimensions.
|
| 635 |
+
</div>
|
| 636 |
+
</div>
|
| 637 |
+
</div>
|
| 638 |
+
"""
|
tabs/data_exploration.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from chat import get_chat_and_score_df, update_chat_display
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def create_exploration_tab(df, MODELS, DATASETS, SCORES, HEADER_CONTENT):
|
| 6 |
+
def filter_and_update_display(model, dataset, selected_scores, current_index):
|
| 7 |
+
try:
|
| 8 |
+
df_chat = get_chat_and_score_df(model, dataset)
|
| 9 |
+
if selected_scores:
|
| 10 |
+
df_chat = df_chat[df_chat["score"].isin(selected_scores)]
|
| 11 |
+
|
| 12 |
+
if df_chat.empty:
|
| 13 |
+
return (
|
| 14 |
+
"<div>No data available for selected filters</div>",
|
| 15 |
+
"<div>No metrics available</div>",
|
| 16 |
+
"<div>No tool information available</div>",
|
| 17 |
+
gr.update(maximum=0, value=0),
|
| 18 |
+
"0/0",
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
max_index = len(df_chat) - 1
|
| 22 |
+
current_index = min(current_index, max_index)
|
| 23 |
+
chat_html, metrics_html, tool_html = update_chat_display(
|
| 24 |
+
df_chat, current_index
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
return (
|
| 28 |
+
chat_html,
|
| 29 |
+
metrics_html,
|
| 30 |
+
tool_html,
|
| 31 |
+
gr.update(maximum=max_index, value=current_index),
|
| 32 |
+
f"{current_index + 1}/{len(df_chat)}",
|
| 33 |
+
)
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error in filter_and_update_display: {str(e)}")
|
| 36 |
+
return (
|
| 37 |
+
f"<div>Error: {str(e)}</div>",
|
| 38 |
+
"<div>No metrics available</div>",
|
| 39 |
+
"<div>No tool information available</div>",
|
| 40 |
+
gr.update(maximum=0, value=0),
|
| 41 |
+
"0/0",
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
with gr.Tab("Data Exploration"):
|
| 45 |
+
gr.HTML(HEADER_CONTENT)
|
| 46 |
+
with gr.Row():
|
| 47 |
+
filters_column = gr.Column(scale=1, min_width=300)
|
| 48 |
+
with filters_column:
|
| 49 |
+
gr.Markdown("# Exploration Filters")
|
| 50 |
+
explore_model = gr.Dropdown(
|
| 51 |
+
choices=MODELS,
|
| 52 |
+
value=MODELS[0],
|
| 53 |
+
label="Select Model",
|
| 54 |
+
)
|
| 55 |
+
explore_dataset = gr.Dropdown(
|
| 56 |
+
choices=DATASETS,
|
| 57 |
+
value=DATASETS[0],
|
| 58 |
+
label="Select Dataset",
|
| 59 |
+
)
|
| 60 |
+
explore_scores = gr.Dropdown(
|
| 61 |
+
choices=SCORES,
|
| 62 |
+
value=SCORES,
|
| 63 |
+
multiselect=True,
|
| 64 |
+
label="Score Range",
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
gr.Markdown("## Navigation")
|
| 68 |
+
index_slider = gr.Slider(
|
| 69 |
+
minimum=0,
|
| 70 |
+
maximum=0,
|
| 71 |
+
step=1,
|
| 72 |
+
value=0,
|
| 73 |
+
label="Position",
|
| 74 |
+
)
|
| 75 |
+
index_text = gr.HTML("0/0")
|
| 76 |
+
with gr.Row():
|
| 77 |
+
prev_btn = gr.Button("← Previous")
|
| 78 |
+
next_btn = gr.Button("Next →")
|
| 79 |
+
|
| 80 |
+
content_column = gr.Column(scale=4)
|
| 81 |
+
with content_column:
|
| 82 |
+
chat_display = gr.HTML()
|
| 83 |
+
metrics_display = gr.HTML()
|
| 84 |
+
tool_info_display = gr.HTML()
|
| 85 |
+
|
| 86 |
+
def update_on_filter_change(model, dataset, scores, _):
|
| 87 |
+
return filter_and_update_display(model, dataset, scores, 0)
|
| 88 |
+
|
| 89 |
+
for control in [explore_model, explore_dataset, explore_scores]:
|
| 90 |
+
control.change(
|
| 91 |
+
update_on_filter_change,
|
| 92 |
+
inputs=[explore_model, explore_dataset, explore_scores, gr.State(0)],
|
| 93 |
+
outputs=[
|
| 94 |
+
chat_display,
|
| 95 |
+
metrics_display,
|
| 96 |
+
tool_info_display,
|
| 97 |
+
index_slider,
|
| 98 |
+
index_text,
|
| 99 |
+
],
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def navigate(direction, current, model, dataset, scores):
|
| 103 |
+
new_index = current + direction
|
| 104 |
+
return filter_and_update_display(model, dataset, scores, new_index)
|
| 105 |
+
|
| 106 |
+
prev_btn.click(
|
| 107 |
+
lambda idx, m, d, s: navigate(-1, idx, m, d, s),
|
| 108 |
+
inputs=[index_slider, explore_model, explore_dataset, explore_scores],
|
| 109 |
+
outputs=[
|
| 110 |
+
chat_display,
|
| 111 |
+
metrics_display,
|
| 112 |
+
tool_info_display,
|
| 113 |
+
index_slider,
|
| 114 |
+
index_text,
|
| 115 |
+
],
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
next_btn.click(
|
| 119 |
+
lambda idx, m, d, s: navigate(1, idx, m, d, s),
|
| 120 |
+
inputs=[index_slider, explore_model, explore_dataset, explore_scores],
|
| 121 |
+
outputs=[
|
| 122 |
+
chat_display,
|
| 123 |
+
metrics_display,
|
| 124 |
+
tool_info_display,
|
| 125 |
+
index_slider,
|
| 126 |
+
index_text,
|
| 127 |
+
],
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
index_slider.change(
|
| 131 |
+
lambda idx, m, d, s: filter_and_update_display(m, d, s, int(idx)),
|
| 132 |
+
inputs=[index_slider, explore_model, explore_dataset, explore_scores],
|
| 133 |
+
outputs=[
|
| 134 |
+
chat_display,
|
| 135 |
+
metrics_display,
|
| 136 |
+
tool_info_display,
|
| 137 |
+
index_slider,
|
| 138 |
+
index_text,
|
| 139 |
+
],
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
return (
|
| 143 |
+
chat_display,
|
| 144 |
+
metrics_display,
|
| 145 |
+
tool_info_display,
|
| 146 |
+
index_slider,
|
| 147 |
+
index_text,
|
| 148 |
+
)
|
tabs/leaderboard.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from data_loader import CATEGORIES, DESCRIPTION_HTML
|
| 4 |
+
from visualization import (
|
| 5 |
+
get_performance_chart,
|
| 6 |
+
get_performance_cost_chart,
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_rank_badge(rank):
|
| 11 |
+
"""Generate HTML for rank badge with appropriate styling"""
|
| 12 |
+
badge_styles = {
|
| 13 |
+
1: ("1st", "linear-gradient(145deg, #ffd700, #ffc400)", "#000"),
|
| 14 |
+
2: ("2nd", "linear-gradient(145deg, #9ca3af, #787C7E)", "#fff"),
|
| 15 |
+
3: ("3rd", "linear-gradient(145deg, #CD7F32, #b36a1d)", "#fff"),
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
if rank in badge_styles:
|
| 19 |
+
label, gradient, text_color = badge_styles[rank]
|
| 20 |
+
return f"""
|
| 21 |
+
<div style="
|
| 22 |
+
display: inline-flex;
|
| 23 |
+
align-items: center;
|
| 24 |
+
justify-content: center;
|
| 25 |
+
min-width: 48px;
|
| 26 |
+
padding: 4px 12px;
|
| 27 |
+
background: {gradient};
|
| 28 |
+
color: {text_color};
|
| 29 |
+
border-radius: 6px;
|
| 30 |
+
font-weight: 600;
|
| 31 |
+
font-size: 0.9em;
|
| 32 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
| 33 |
+
">
|
| 34 |
+
{label}
|
| 35 |
+
</div>
|
| 36 |
+
"""
|
| 37 |
+
return f"""
|
| 38 |
+
<div style="
|
| 39 |
+
display: inline-flex;
|
| 40 |
+
align-items: center;
|
| 41 |
+
justify-content: center;
|
| 42 |
+
min-width: 28px;
|
| 43 |
+
color: #a1a1aa;
|
| 44 |
+
font-weight: 500;
|
| 45 |
+
">
|
| 46 |
+
{rank}
|
| 47 |
+
</div>
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_type_badge(model_type):
|
| 52 |
+
"""Generate HTML for model type badge"""
|
| 53 |
+
colors = {"Private": "#4F46E5", "Open source": "#16A34A"}
|
| 54 |
+
bg_color = colors.get(model_type, "#4F46E5")
|
| 55 |
+
return f"""
|
| 56 |
+
<div style="
|
| 57 |
+
display: inline-flex;
|
| 58 |
+
align-items: center;
|
| 59 |
+
padding: 4px 8px;
|
| 60 |
+
background: {bg_color};
|
| 61 |
+
color: white;
|
| 62 |
+
border-radius: 4px;
|
| 63 |
+
font-size: 0.85em;
|
| 64 |
+
font-weight: 500;
|
| 65 |
+
">
|
| 66 |
+
{model_type}
|
| 67 |
+
</div>
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_score_bar(score):
|
| 72 |
+
"""Generate HTML for score bar"""
|
| 73 |
+
width = score * 100
|
| 74 |
+
return f"""
|
| 75 |
+
<div style="display: flex; align-items: center; gap: 12px; width: 100%;">
|
| 76 |
+
<div style="
|
| 77 |
+
flex-grow: 1;
|
| 78 |
+
height: 6px;
|
| 79 |
+
background: var(--score-bg, rgba(255, 255, 255, 0.1));
|
| 80 |
+
border-radius: 3px;
|
| 81 |
+
overflow: hidden;
|
| 82 |
+
max-width: 200px;
|
| 83 |
+
">
|
| 84 |
+
<div style="
|
| 85 |
+
width: {width}%;
|
| 86 |
+
height: 100%;
|
| 87 |
+
background: var(--accent-color, #4F46E5);
|
| 88 |
+
border-radius: 3px;
|
| 89 |
+
"></div>
|
| 90 |
+
</div>
|
| 91 |
+
<span style="
|
| 92 |
+
font-family: 'SF Mono', monospace;
|
| 93 |
+
font-weight: 600;
|
| 94 |
+
color: var(--text-primary, #ffffff);
|
| 95 |
+
min-width: 60px;
|
| 96 |
+
">{score:.3f}</span>
|
| 97 |
+
</div>
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def filter_leaderboard(df, model_type, category, sort_by):
|
| 102 |
+
filtered_df = df.copy()
|
| 103 |
+
if model_type != "All":
|
| 104 |
+
filtered_df = filtered_df[filtered_df["Model Type"].str.strip() == model_type]
|
| 105 |
+
|
| 106 |
+
dataset_columns = CATEGORIES.get(category, ["Model Avg"])
|
| 107 |
+
avg_score = filtered_df[dataset_columns].mean(axis=1)
|
| 108 |
+
filtered_df["Category Score"] = avg_score
|
| 109 |
+
|
| 110 |
+
if sort_by == "Performance":
|
| 111 |
+
filtered_df = filtered_df.sort_values(by="Category Score", ascending=False)
|
| 112 |
+
else:
|
| 113 |
+
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True)
|
| 114 |
+
|
| 115 |
+
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
| 116 |
+
perf_chart = get_performance_chart(filtered_df, category)
|
| 117 |
+
cost_chart = get_performance_cost_chart(filtered_df, category)
|
| 118 |
+
|
| 119 |
+
# Generate styled table HTML
|
| 120 |
+
table_html = f"""
|
| 121 |
+
<style>
|
| 122 |
+
@media (prefers-color-scheme: dark) {{
|
| 123 |
+
:root {{
|
| 124 |
+
--bg-color: #1a1b1e;
|
| 125 |
+
--text-color: #ffffff;
|
| 126 |
+
--border-color: #2d2e32;
|
| 127 |
+
--hover-bg: #2d2e32;
|
| 128 |
+
--note-bg: #2d2e32;
|
| 129 |
+
--note-text: #a1a1aa;
|
| 130 |
+
}}
|
| 131 |
+
}}
|
| 132 |
+
|
| 133 |
+
@media (prefers-color-scheme: light) {{
|
| 134 |
+
:root {{
|
| 135 |
+
--bg-color: #ffffff;
|
| 136 |
+
--text-color: #000000;
|
| 137 |
+
--border-color: #e5e7eb;
|
| 138 |
+
--hover-bg: #f3f4f6;
|
| 139 |
+
--note-bg: #f3f4f6;
|
| 140 |
+
--note-text: #4b5563;
|
| 141 |
+
}}
|
| 142 |
+
}}
|
| 143 |
+
|
| 144 |
+
.dark-table-container {{
|
| 145 |
+
background: var(--bg-color);
|
| 146 |
+
border-radius: 12px;
|
| 147 |
+
padding: 1px;
|
| 148 |
+
margin: 20px 0;
|
| 149 |
+
}}
|
| 150 |
+
|
| 151 |
+
.dark-styled-table {{
|
| 152 |
+
width: 100%;
|
| 153 |
+
border-collapse: collapse;
|
| 154 |
+
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
|
| 155 |
+
background: var(--bg-color);
|
| 156 |
+
color: var(--text-color);
|
| 157 |
+
}}
|
| 158 |
+
|
| 159 |
+
.dark-styled-table thead {{
|
| 160 |
+
position: sticky;
|
| 161 |
+
top: 0;
|
| 162 |
+
background: var(--bg-color);
|
| 163 |
+
z-index: 1;
|
| 164 |
+
}}
|
| 165 |
+
|
| 166 |
+
.dark-styled-table th {{
|
| 167 |
+
padding: 16px;
|
| 168 |
+
text-align: left;
|
| 169 |
+
font-weight: 500;
|
| 170 |
+
color: var(--text-color);
|
| 171 |
+
border-bottom: 1px solid var(--border-color);
|
| 172 |
+
}}
|
| 173 |
+
|
| 174 |
+
.dark-styled-table td {{
|
| 175 |
+
padding: 16px;
|
| 176 |
+
border-bottom: 1px solid var(--border-color);
|
| 177 |
+
color: var(--text-color);
|
| 178 |
+
}}
|
| 179 |
+
|
| 180 |
+
.dark-styled-table tbody tr:hover {{
|
| 181 |
+
background: var(--hover-bg);
|
| 182 |
+
}}
|
| 183 |
+
|
| 184 |
+
.model-cell {{
|
| 185 |
+
font-weight: 500;
|
| 186 |
+
}}
|
| 187 |
+
|
| 188 |
+
.score-cell {{
|
| 189 |
+
font-weight: 500;
|
| 190 |
+
}}
|
| 191 |
+
|
| 192 |
+
.note-box {{
|
| 193 |
+
margin-top: 20px;
|
| 194 |
+
padding: 16px;
|
| 195 |
+
background: var(--note-bg);
|
| 196 |
+
border-radius: 8px;
|
| 197 |
+
color: var(--note-text);
|
| 198 |
+
}}
|
| 199 |
+
</style>
|
| 200 |
+
<div class="dark-table-container">
|
| 201 |
+
<table class="dark-styled-table">
|
| 202 |
+
<thead>
|
| 203 |
+
<tr>
|
| 204 |
+
<th>Rank</th>
|
| 205 |
+
<th>Model</th>
|
| 206 |
+
<th>Type</th>
|
| 207 |
+
<th>Cost (I/O)</th>
|
| 208 |
+
<th>Category Score</th>
|
| 209 |
+
</tr>
|
| 210 |
+
</thead>
|
| 211 |
+
<tbody>
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
for _, row in filtered_df.iterrows():
|
| 215 |
+
table_html += f"""
|
| 216 |
+
<tr>
|
| 217 |
+
<td>{get_rank_badge(row['Rank'])}</td>
|
| 218 |
+
<td class="model-cell">{row['Model']}</td>
|
| 219 |
+
<td>{get_type_badge(row['Model Type'])}</td>
|
| 220 |
+
<td>${row['Input cost per million token']:.2f}/${row['Output cost per million token']:.2f}</td>
|
| 221 |
+
<td class="score-cell">{get_score_bar(row['Category Score'])}</td>
|
| 222 |
+
</tr>
|
| 223 |
+
"""
|
| 224 |
+
|
| 225 |
+
table_html += """
|
| 226 |
+
</tbody>
|
| 227 |
+
</table>
|
| 228 |
+
</div>
|
| 229 |
+
<div class="note-box">
|
| 230 |
+
<p style="margin: 0; font-size: 0.9em;">
|
| 231 |
+
Note: API pricing for sorting by cost uses a 3-to-1 input/output ratio calculation. For Gemini 2.0, the cost is assumed to match Gemini 1.5's pricing since actual rates aren't yet available.
|
| 232 |
+
</p>
|
| 233 |
+
</div>
|
| 234 |
+
"""
|
| 235 |
+
|
| 236 |
+
return table_html, perf_chart, cost_chart
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
def create_leaderboard_tab(df, CATEGORIES, METHODOLOGY, HEADER_CONTENT, CARDS):
|
| 240 |
+
with gr.Tab("Leaderboard"):
|
| 241 |
+
gr.HTML(HEADER_CONTENT + CARDS)
|
| 242 |
+
gr.HTML(DESCRIPTION_HTML)
|
| 243 |
+
|
| 244 |
+
# Filters row
|
| 245 |
+
with gr.Row(equal_height=True):
|
| 246 |
+
with gr.Column(scale=1):
|
| 247 |
+
model_type = gr.Dropdown(
|
| 248 |
+
choices=["All"] + df["Model Type"].unique().tolist(),
|
| 249 |
+
value="All",
|
| 250 |
+
label="Model Type",
|
| 251 |
+
)
|
| 252 |
+
with gr.Column(scale=1):
|
| 253 |
+
category = gr.Dropdown(
|
| 254 |
+
choices=list(CATEGORIES.keys()),
|
| 255 |
+
value=list(CATEGORIES.keys())[0],
|
| 256 |
+
label="Category",
|
| 257 |
+
)
|
| 258 |
+
with gr.Column(scale=1):
|
| 259 |
+
sort_by = gr.Radio(
|
| 260 |
+
choices=["Performance", "Cost"],
|
| 261 |
+
value="Performance",
|
| 262 |
+
label="Sort by",
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
# Content
|
| 266 |
+
output = gr.HTML()
|
| 267 |
+
plot1 = gr.Plot()
|
| 268 |
+
plot2 = gr.Plot()
|
| 269 |
+
gr.Markdown(METHODOLOGY)
|
| 270 |
+
|
| 271 |
+
for input_comp in [model_type, category, sort_by]:
|
| 272 |
+
input_comp.change(
|
| 273 |
+
fn=lambda m, c, s: filter_leaderboard(df, m, c, s),
|
| 274 |
+
inputs=[model_type, category, sort_by],
|
| 275 |
+
outputs=[output, plot1, plot2],
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
return output, plot1, plot2
|
tabs/model_comparison.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from visualization import create_radar_plot
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def compare_models(df, model_names=None):
|
| 6 |
+
if model_names is None or len(model_names) == 0:
|
| 7 |
+
model_names = [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
| 8 |
+
|
| 9 |
+
filtered_df = df[df["Model"].isin(model_names)]
|
| 10 |
+
radar_chart = create_radar_plot(df, model_names)
|
| 11 |
+
|
| 12 |
+
# Create styled table for model info
|
| 13 |
+
info_html = f"""
|
| 14 |
+
<div class="dark-table-container">
|
| 15 |
+
<table class="dark-styled-table">
|
| 16 |
+
<thead>
|
| 17 |
+
<tr>
|
| 18 |
+
<th>Model</th>
|
| 19 |
+
<th>Type</th>
|
| 20 |
+
<th>Average</th>
|
| 21 |
+
<th>I/O Cost</th>
|
| 22 |
+
<th>Single Turn</th>
|
| 23 |
+
<th>Multi Turn</th>
|
| 24 |
+
</tr>
|
| 25 |
+
</thead>
|
| 26 |
+
<tbody>
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
for _, row in filtered_df.iterrows():
|
| 30 |
+
info_html += f"""
|
| 31 |
+
<tr>
|
| 32 |
+
<td>{row['Model']}</td>
|
| 33 |
+
<td>{row['Model Type']}</td>
|
| 34 |
+
<td>{row['Model Avg']:.3f}</td>
|
| 35 |
+
<td>${row['IO Cost']:.2f}</td>
|
| 36 |
+
<td>{row['single turn perf']:.3f}</td>
|
| 37 |
+
<td>{row['multi turn perf']:.3f}</td>
|
| 38 |
+
</tr>
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
info_html += """
|
| 42 |
+
</tbody>
|
| 43 |
+
</table>
|
| 44 |
+
</div>
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
return info_html, radar_chart
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def create_model_comparison_tab(df, HEADER_CONTENT, CARDS):
|
| 51 |
+
with gr.Tab("Model Comparison"):
|
| 52 |
+
gr.HTML(HEADER_CONTENT)
|
| 53 |
+
with gr.Column():
|
| 54 |
+
# Filters row
|
| 55 |
+
with gr.Row(equal_height=True):
|
| 56 |
+
model_selector = gr.Dropdown(
|
| 57 |
+
choices=df["Model"].unique().tolist(),
|
| 58 |
+
value=df.sort_values("Model Avg", ascending=False).iloc[0]["Model"],
|
| 59 |
+
multiselect=True,
|
| 60 |
+
label="Select Models to Compare",
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Content
|
| 64 |
+
model_info = gr.HTML()
|
| 65 |
+
radar_plot = gr.Plot()
|
| 66 |
+
|
| 67 |
+
model_selector.change(
|
| 68 |
+
fn=lambda m: compare_models(df, m),
|
| 69 |
+
inputs=[model_selector],
|
| 70 |
+
outputs=[model_info, radar_plot],
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
return model_info, radar_plot
|
utils.py
CHANGED
|
@@ -1,56 +1,3 @@
|
|
| 1 |
-
from data_loader import CATEGORIES
|
| 2 |
-
from visualization import (
|
| 3 |
-
create_radar_plot,
|
| 4 |
-
get_performance_chart,
|
| 5 |
-
get_performance_cost_chart,
|
| 6 |
-
)
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def model_info_tab(df, model_names=None):
|
| 10 |
-
if model_names is None or len(model_names) == 0:
|
| 11 |
-
model_names = [df.sort_values("Model Avg", ascending=False).iloc[0]["Model"]]
|
| 12 |
-
|
| 13 |
-
filtered_df = df[df["Model"].isin(model_names)]
|
| 14 |
-
radar_chart = create_radar_plot(df, model_names)
|
| 15 |
-
|
| 16 |
-
# Create styled table for model info
|
| 17 |
-
info_html = f"""
|
| 18 |
-
<div class="dark-table-container">
|
| 19 |
-
<table class="dark-styled-table">
|
| 20 |
-
<thead>
|
| 21 |
-
<tr>
|
| 22 |
-
<th>Model</th>
|
| 23 |
-
<th>Type</th>
|
| 24 |
-
<th>Average</th>
|
| 25 |
-
<th>I/O Cost</th>
|
| 26 |
-
<th>Single Turn</th>
|
| 27 |
-
<th>Multi Turn</th>
|
| 28 |
-
</tr>
|
| 29 |
-
</thead>
|
| 30 |
-
<tbody>
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
for _, row in filtered_df.iterrows():
|
| 34 |
-
info_html += f"""
|
| 35 |
-
<tr>
|
| 36 |
-
<td>{row['Model']}</td>
|
| 37 |
-
<td>{row['Model Type']}</td>
|
| 38 |
-
<td>{row['Model Avg']:.3f}</td>
|
| 39 |
-
<td>${row['IO Cost']:.2f}</td>
|
| 40 |
-
<td>{row['single turn perf']:.3f}</td>
|
| 41 |
-
<td>{row['multi turn perf']:.3f}</td>
|
| 42 |
-
</tr>
|
| 43 |
-
"""
|
| 44 |
-
|
| 45 |
-
info_html += """
|
| 46 |
-
</tbody>
|
| 47 |
-
</table>
|
| 48 |
-
</div>
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
-
return info_html, radar_chart
|
| 52 |
-
|
| 53 |
-
|
| 54 |
def get_rank_badge(rank):
|
| 55 |
"""Generate HTML for rank badge with appropriate styling"""
|
| 56 |
badge_styles = {
|
|
@@ -140,158 +87,3 @@ def get_score_bar(score):
|
|
| 140 |
">{score:.3f}</span>
|
| 141 |
</div>
|
| 142 |
"""
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
def filter_leaderboard(df, model_type, category, sort_by):
|
| 146 |
-
filtered_df = df.copy()
|
| 147 |
-
if model_type != "All":
|
| 148 |
-
filtered_df = filtered_df[filtered_df["Model Type"].str.strip() == model_type]
|
| 149 |
-
|
| 150 |
-
dataset_columns = CATEGORIES.get(category, ["Model Avg"])
|
| 151 |
-
avg_score = filtered_df[dataset_columns].mean(axis=1)
|
| 152 |
-
filtered_df["Category Score"] = avg_score
|
| 153 |
-
|
| 154 |
-
if sort_by == "Performance":
|
| 155 |
-
filtered_df = filtered_df.sort_values(by="Category Score", ascending=False)
|
| 156 |
-
else:
|
| 157 |
-
filtered_df = filtered_df.sort_values(by="IO Cost", ascending=True)
|
| 158 |
-
|
| 159 |
-
filtered_df["Rank"] = range(1, len(filtered_df) + 1)
|
| 160 |
-
perf_chart = get_performance_chart(filtered_df, category)
|
| 161 |
-
cost_chart = get_performance_cost_chart(filtered_df, category)
|
| 162 |
-
|
| 163 |
-
table_html = f"""
|
| 164 |
-
<style>
|
| 165 |
-
.dark-table-container {{
|
| 166 |
-
max-height: 600px;
|
| 167 |
-
overflow-y: auto;
|
| 168 |
-
background: linear-gradient(145deg, #1a1b1e, #1f2023);
|
| 169 |
-
border-radius: 16px;
|
| 170 |
-
padding: 1px;
|
| 171 |
-
margin: 20px 0;
|
| 172 |
-
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1),
|
| 173 |
-
0 2px 4px -1px rgba(0, 0, 0, 0.06);
|
| 174 |
-
}}
|
| 175 |
-
|
| 176 |
-
.dark-styled-table {{
|
| 177 |
-
width: 100%;
|
| 178 |
-
border-collapse: separate;
|
| 179 |
-
border-spacing: 0;
|
| 180 |
-
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
|
| 181 |
-
background: transparent;
|
| 182 |
-
color: #ffffff;
|
| 183 |
-
}}
|
| 184 |
-
|
| 185 |
-
.dark-styled-table thead {{
|
| 186 |
-
position: sticky;
|
| 187 |
-
top: 0;
|
| 188 |
-
background: linear-gradient(180deg, #1a1b1e, #1d1e22);
|
| 189 |
-
z-index: 1;
|
| 190 |
-
}}
|
| 191 |
-
|
| 192 |
-
.dark-styled-table th {{
|
| 193 |
-
padding: 12px 20px;
|
| 194 |
-
text-align: left;
|
| 195 |
-
font-weight: 600;
|
| 196 |
-
color: #ffffff;
|
| 197 |
-
text-transform: uppercase;
|
| 198 |
-
font-size: 0.75em;
|
| 199 |
-
background: #1a1b1e;
|
| 200 |
-
letter-spacing: 0.05em;
|
| 201 |
-
border-bottom: 1px solid #2d2e32;
|
| 202 |
-
}}
|
| 203 |
-
|
| 204 |
-
.dark-styled-table td {{
|
| 205 |
-
padding: 16px 20px;
|
| 206 |
-
border-bottom: 1px solid rgba(45, 46, 50, 0.5);
|
| 207 |
-
color: #ffffff;
|
| 208 |
-
font-size: 0.95em;
|
| 209 |
-
}}
|
| 210 |
-
|
| 211 |
-
.dark-styled-table tbody tr {{
|
| 212 |
-
transition: all 0.2s ease;
|
| 213 |
-
background: transparent;
|
| 214 |
-
}}
|
| 215 |
-
|
| 216 |
-
.dark-styled-table tbody tr:hover {{
|
| 217 |
-
background: rgba(45, 46, 50, 0.5);
|
| 218 |
-
}}
|
| 219 |
-
|
| 220 |
-
.model-cell {{
|
| 221 |
-
font-weight: 500;
|
| 222 |
-
color: #e2e8f0;
|
| 223 |
-
}}
|
| 224 |
-
|
| 225 |
-
.cost-cell {{
|
| 226 |
-
font-family: 'SF Mono', monospace;
|
| 227 |
-
color: #94a3b8;
|
| 228 |
-
}}
|
| 229 |
-
|
| 230 |
-
.note-box {{
|
| 231 |
-
margin: 20px 0;
|
| 232 |
-
padding: 16px 20px;
|
| 233 |
-
background: rgba(45, 46, 50, 0.5);
|
| 234 |
-
border-radius: 12px;
|
| 235 |
-
color: #94a3b8;
|
| 236 |
-
font-size: 0.9em;
|
| 237 |
-
border-left: 4px solid #4f46e5;
|
| 238 |
-
}}
|
| 239 |
-
|
| 240 |
-
/* Custom scrollbar */
|
| 241 |
-
.dark-table-container::-webkit-scrollbar {{
|
| 242 |
-
width: 8px;
|
| 243 |
-
}}
|
| 244 |
-
|
| 245 |
-
.dark-table-container::-webkit-scrollbar-track {{
|
| 246 |
-
background: #1a1b1e;
|
| 247 |
-
border-radius: 4px;
|
| 248 |
-
}}
|
| 249 |
-
|
| 250 |
-
.dark-table-container::-webkit-scrollbar-thumb {{
|
| 251 |
-
background: #2d2e32;
|
| 252 |
-
border-radius: 4px;
|
| 253 |
-
}}
|
| 254 |
-
|
| 255 |
-
.dark-table-container::-webkit-scrollbar-thumb:hover {{
|
| 256 |
-
background: #3d3e42;
|
| 257 |
-
}}
|
| 258 |
-
</style>
|
| 259 |
-
<div class="dark-table-container">
|
| 260 |
-
<table class="dark-styled-table">
|
| 261 |
-
<thead>
|
| 262 |
-
<tr>
|
| 263 |
-
<th>RANK</th>
|
| 264 |
-
<th>MODEL</th>
|
| 265 |
-
<th>TYPE</th>
|
| 266 |
-
<th>COST (I/O)</th>
|
| 267 |
-
<th>SCORE</th>
|
| 268 |
-
</tr>
|
| 269 |
-
</thead>
|
| 270 |
-
<tbody>
|
| 271 |
-
"""
|
| 272 |
-
|
| 273 |
-
for _, row in filtered_df.iterrows():
|
| 274 |
-
rank_display = get_rank_badge(row["Rank"])
|
| 275 |
-
type_badge = get_type_badge(row["Model Type"])
|
| 276 |
-
score_bar = get_score_bar(row["Category Score"])
|
| 277 |
-
|
| 278 |
-
table_html += f"""
|
| 279 |
-
<tr>
|
| 280 |
-
<td>{rank_display}</td>
|
| 281 |
-
<td class="model-cell">{row['Model']}</td>
|
| 282 |
-
<td>{type_badge}</td>
|
| 283 |
-
<td class="cost-cell">${row['Input cost per million token']:.2f}/${row['Output cost per million token']:.2f}</td>
|
| 284 |
-
<td>{score_bar}</td>
|
| 285 |
-
</tr>
|
| 286 |
-
"""
|
| 287 |
-
|
| 288 |
-
table_html += """
|
| 289 |
-
</tbody>
|
| 290 |
-
</table>
|
| 291 |
-
</div>
|
| 292 |
-
<div class="note-box">
|
| 293 |
-
Note: Cost for sorting is calculated using 3:1 ratio on I/O. Cost of Gemini 2.0 is assumed to be same as that of Gemini 1.5.
|
| 294 |
-
</div>
|
| 295 |
-
"""
|
| 296 |
-
|
| 297 |
-
return table_html, perf_chart, cost_chart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
def get_rank_badge(rank):
|
| 2 |
"""Generate HTML for rank badge with appropriate styling"""
|
| 3 |
badge_styles = {
|
|
|
|
| 87 |
">{score:.3f}</span>
|
| 88 |
</div>
|
| 89 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|