Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 20,113 Bytes
41c1420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""
Reusable components for the Agent Leaderboard v2
These are stable components that don't change frequently
"""
def get_chart_colors():
return {
"Private": "#1098F7", # Airglow Blue for Proprietary
"Open source": "#58BC82", # Green for Open source
"performance_bands": ["#DCFCE7", "#FEF9C3", "#FEE2E2"],
"text": "#F5F6F7",
"background": "#01091A",
"grid": (0, 0, 0, 0.1), # RGBA tuple for grid
}
def get_rank_badge(rank):
"""Generate HTML for rank badge with appropriate styling"""
badge_styles = {
1: ("1st", "linear-gradient(145deg, #ffd700, #ffc400)", "#000"),
2: ("2nd", "linear-gradient(145deg, #9ca3af, #787C7E)", "#fff"),
3: ("3rd", "linear-gradient(145deg, #CD7F32, #b36a1d)", "#fff"),
}
if rank in badge_styles:
label, gradient, text_color = badge_styles[rank]
return f"""
<div style="
display: inline-flex;
align-items: center;
justify-content: center;
min-width: 48px;
padding: 4px 12px;
background: {gradient};
color: {text_color};
border-radius: 6px;
font-weight: 600;
font-size: 0.9em;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
">
{label}
</div>
"""
return f"""
<div style="
display: inline-flex;
align-items: center;
justify-content: center;
min-width: 28px;
color: #a1a1aa;
font-weight: 500;
">
{rank}
</div>
"""
def get_type_badge(model_type):
"""Generate HTML for model type badge"""
colors = get_chart_colors()
colors = {"Private": colors["Private"], "Open source": colors["Open source"]}
bg_color = colors.get(model_type, "#4F46E5")
return f"""
<div style="
display: inline-flex;
align-items: center;
padding: 4px 8px;
background: {bg_color};
color: white;
border-radius: 4px;
font-size: 0.85em;
font-weight: 500;
">
{model_type}
</div>
"""
def get_output_type_badge(output_type):
"""Generate HTML for output type badge"""
if output_type == "Reasoning":
bg_color = "#9333ea" # Purple for reasoning
else:
bg_color = "#6b7280" # Gray for normal
return f"""
<div style="
display: inline-flex;
align-items: center;
gap: 4px;
padding: 4px 8px;
background: {bg_color};
color: white;
border-radius: 4px;
font-size: 0.85em;
font-weight: 500;
">
{output_type}
</div>
"""
def get_score_bar(score):
"""Generate HTML for score bar with gradient styling and tooltip"""
width = score * 100
return f"""
<div style="display: flex; align-items: center; gap: 12px; width: 100%;">
<div style="
flex-grow: 1;
height: 8px;
background: rgba(245, 246, 247, 0.1);
border-radius: 4px;
overflow: hidden;
max-width: 200px;
">
<div style="
width: {width}%;
height: 100%;
background: linear-gradient(90deg, #E35454, #1098F7);
border-radius: 4px;
transition: width 0.3s ease;
"></div>
</div>
<span style="
font-family: 'SF Mono', monospace;
font-weight: 600;
color: #F5F6F7;
min-width: 60px;
">{score:.3f}</span>
</div>
"""
def get_metric_tooltip(metric):
"""Return tooltip text for different metrics"""
tooltips = {
"Avg AC": "Action Completion (AC): Measures how well the agent accomplishes user goals and completes tasks successfully. Higher is better (0-1 scale).",
"Avg TSQ": "Tool Selection Quality (TSQ): Evaluates the accuracy of selecting the right tools and using them with correct parameters. Higher is better (0-1 scale).",
"Avg Total Cost": "Average cost per conversation session in USD, including all API calls and processing. Lower is better.",
"Avg Session Duration": "Average time taken to complete a full conversation session from start to finish, measured in seconds. Lower is generally better.",
"Avg Turns": "Average number of back-and-forth exchanges needed to complete a task. Lower typically indicates more efficient task completion.",
"Banking AC": "Action Completion score specific to banking domain tasks.",
"Banking TSQ": "Tool Selection Quality score specific to banking domain tasks.",
"Healthcare AC": "Action Completion score specific to healthcare domain tasks.",
"Healthcare TSQ": "Tool Selection Quality score specific to healthcare domain tasks.",
"Insurance AC": "Action Completion score specific to insurance domain tasks.",
"Insurance TSQ": "Tool Selection Quality score specific to insurance domain tasks.",
"Investment AC": "Action Completion score specific to investment domain tasks.",
"Investment TSQ": "Tool Selection Quality score specific to investment domain tasks.",
"Telecom AC": "Action Completion score specific to telecom domain tasks.",
"Telecom TSQ": "Tool Selection Quality score specific to telecom domain tasks.",
}
return tooltips.get(metric, "")
def get_responsive_styles():
"""Return responsive CSS styles for mobile devices"""
return """
<style>
/* Enhanced mobile responsiveness */
@media (max-width: 768px) {
/* Stack grid layouts vertically on mobile */
.insight-card-grid,
.metric-card-grid {
grid-template-columns: 1fr !important;
gap: 12px !important;
}
/* Adjust table for mobile */
.v2-styled-table {
font-size: 12px !important;
}
.v2-styled-table th,
.v2-styled-table td {
padding: 8px 6px !important;
}
/* Hide less important columns on mobile */
.v2-styled-table th:nth-child(8),
.v2-styled-table td:nth-child(8),
.v2-styled-table th:nth-child(9),
.v2-styled-table td:nth-child(9) {
display: none !important;
}
/* Make score bars more compact */
.score-cell {
min-width: 120px !important;
}
/* Adjust domain selector for mobile */
.domain-radio .wrap {
flex-direction: column !important;
gap: 8px !important;
}
.domain-radio label {
min-width: 100% !important;
max-width: 100% !important;
}
/* Compact filter controls on mobile */
.compact-filter-row {
flex-direction: column !important;
}
.compact-radio .wrap > label {
font-size: 0.7rem !important;
padding: 4px 8px !important;
}
/* Adjust navigation buttons */
.nav-buttons-container {
flex-direction: column !important;
gap: 8px !important;
}
.nav-link-button {
width: 100% !important;
justify-content: center !important;
}
/* Header adjustments */
h1 {
font-size: 2rem !important;
}
h2 {
font-size: 1.5rem !important;
}
h3 {
font-size: 1.2rem !important;
}
/* Card padding adjustments */
.dark-container {
padding: 16px !important;
}
.info-box {
padding: 12px !important;
}
/* Chart container adjustments */
.chart-container {
overflow-x: auto !important;
-webkit-overflow-scrolling: touch !important;
}
/* Badge adjustments */
.badge-row {
flex-wrap: wrap !important;
}
.badge {
font-size: 0.65rem !important;
padding: 3px 8px !important;
}
}
@media (max-width: 480px) {
/* Ultra-compact layout for very small screens */
.v2-styled-table {
font-size: 10px !important;
}
/* Show only essential columns */
.v2-styled-table th:nth-child(n+6),
.v2-styled-table td:nth-child(n+6) {
display: none !important;
}
/* Keep only Rank, Model, Type, and main scores visible */
.v2-styled-table th:nth-child(5),
.v2-styled-table td:nth-child(5) {
display: table-cell !important;
}
/* Reduce all padding */
* {
padding-left: 8px !important;
padding-right: 8px !important;
}
/* Stack all buttons vertically */
.header-action-button {
width: 90% !important;
margin: 0 auto !important;
}
}
/* Tooltip improvements for mobile */
@media (hover: none) and (pointer: coarse) {
/* Show tooltips on tap for mobile */
.tooltip-trigger {
position: relative;
cursor: help;
}
.tooltip-trigger:active .tooltip-content,
.tooltip-trigger:focus .tooltip-content {
display: block !important;
}
}
</style>
"""
def get_faq_section():
"""Return the FAQ section HTML"""
return """
<div class="dark-container" style="margin-top: 40px; margin-bottom: 40px;">
<div class="section-header">
<span class="section-icon" style="color: var(--accent-primary);">β</span>
<h3 style="margin: 0; color: var(--text-primary); font-size: 1.5rem; font-family: 'Geist', sans-serif; font-weight: 700;">
Frequently Asked Questions
</h3>
</div>
<div style="margin-top: 24px;">
<!-- FAQ Item 1 -->
<details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
<summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
<span style="color: var(--accent-primary);"></span> Does the methodology favor GPT-4.1 since it uses GPT-4.1 to simulate users and tools, so GPT-4.1 ranks itself highest.
</summary>
<div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
<strong style="color: var(--accent-secondary);"></strong> GPT's top ranking isn't due to simulator bias. Scenarios are pre-generated with Claude and fixed for all models. The user simulator drives goal-based conversations, and the tool simulator provides synthetic responses without influencing outcomes. Evaluation uses Claude as a judge, which should theoretically favor Claude (per sycophancy theory), but GPTs still lead.
</div>
</details>
<!-- FAQ Item 2 -->
<details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
<summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
<span style="color: var(--accent-primary);"></span> Why does a specific model rank lower when our internal results show otherwise?
</summary>
<div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
<strong style="color: var(--accent-secondary);"></strong> Performance varies by prompt, task, complexity, and domain. Our evaluations kept prompts identical across models for consistency. Different evaluation methodologies and task sets can lead to different rankings.
</div>
</details>
<!-- FAQ Item 3 -->
<details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
<summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
<span style="color: var(--accent-primary);"></span> Why is my favorite model missing?
</summary>
<div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
<strong style="color: var(--accent-secondary);"></strong> We were not able to add certain models either because they were not in our initial list or had issues while running the experiments, such as improper tool call output format. We skipped some of the models which performed poorly in our leaderboard v1.
</div>
</details>
<!-- FAQ Item 4 -->
<details class="faq-item" style="margin-bottom: 16px; background: var(--bg-secondary); border-radius: 12px; padding: 16px; border: 1px solid var(--border-subtle);">
<summary style="cursor: pointer; font-weight: 600; color: var(--text-primary); font-size: 1rem; display: flex; align-items: center; gap: 8px;">
<span style="color: var(--accent-primary);"></span> We were surprised Gemini 2.5 Pro ranked lower. Our internal benchmarks show it's excellent for code research and AI code review tasks.
</summary>
<div style="margin-top: 12px; padding-left: 28px; color: var(--text-secondary); line-height: 1.6;">
<strong style="color: var(--accent-secondary);"></strong> Results differ because this leaderboard evaluates support agent scenarios only, not coding ones. Different models excel at different types of tasks, and this benchmark focuses specifically on business support agent use cases across banking, healthcare, insurance, investment, and telecom domains.
</div>
</details>
<!-- About Metrics -->
<div style="margin-top: 32px; padding: 20px; background: linear-gradient(145deg, rgba(227, 84, 84, 0.05) 0%, rgba(16, 152, 247, 0.05) 100%); border-radius: 12px; border: 1px solid var(--border-default);">
<h4 style="color: var(--text-primary); margin-top: 0; margin-bottom: 16px; font-size: 1.2rem; font-family: 'Geist', sans-serif; font-weight: 600; display: flex; align-items: center; gap: 8px;">
<span style="font-size: 1.3rem;">π</span>
Understanding the Metrics
</h4>
<div style="display: grid; gap: 16px;">
<div>
<h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Action Completion (AC)</h5>
<p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
A score from 0 to 1 measuring how successfully the agent completes the user's requested tasks. This evaluates whether the agent achieves the intended goals, follows instructions accurately, and provides complete solutions. Higher scores indicate better task completion.
</p>
</div>
<div>
<h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Tool Selection Quality (TSQ)</h5>
<p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
A score from 0 to 1 evaluating how well the agent selects and uses the appropriate tools for each task. This includes choosing the right tool, using correct parameters, and proper sequencing of tool calls. Higher scores indicate better tool utilization.
</p>
</div>
<div>
<h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Domain-Specific Performance</h5>
<p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
Models are tested across five business domains: Banking, Healthcare, Insurance, Investment, and Telecom. Each domain has specific scenarios and requirements that test the agent's ability to handle industry-specific tasks and terminology.
</p>
</div>
<div>
<h5 style="color: var(--accent-primary); margin: 0 0 8px 0; font-size: 1rem;">Efficiency Metrics</h5>
<p style="color: var(--text-secondary); margin: 0; line-height: 1.5;">
β’ <strong>Cost:</strong> Total API cost per session in USD<br>
β’ <strong>Duration:</strong> Time to complete tasks in seconds<br>
β’ <strong>Turns:</strong> Number of exchanges to reach resolution<br>
These metrics help identify the most cost-effective and efficient models for production use.
</p>
</div>
</div>
<div style="margin-top: 20px; padding-top: 16px; border-top: 1px solid var(--border-subtle);">
<p style="color: var(--text-secondary); margin: 0; font-size: 0.9rem; line-height: 1.5;">
<strong>Learn More:</strong> For detailed methodology and evaluation criteria, visit the
<a href="https://galileo.ai/blog/agent-leaderboard-v2" target="_blank" style="color: var(--accent-primary); text-decoration: none;">
official blog post β
</a>
or explore the
<a href="https://github.com/rungalileo/agent-leaderboard" target="_blank" style="color: var(--accent-primary); text-decoration: none;">
GitHub repository β
</a>
</p>
</div>
</div>
</div>
<style>
.faq-item {
transition: all 0.3s ease;
}
.faq-item:hover {
border-color: var(--accent-primary) !important;
box-shadow: 0 4px 12px rgba(227, 84, 84, 0.1);
}
.faq-item summary::-webkit-details-marker {
display: none;
}
.faq-item summary::before {
content: 'βΆ';
display: inline-block;
margin-right: 8px;
transition: transform 0.3s ease;
color: var(--accent-secondary);
}
.faq-item[open] summary::before {
transform: rotate(90deg);
}
.faq-item summary:hover {
color: var(--accent-primary) !important;
}
</style>
</div>
"""
# Column mapping for sorting
SORT_COLUMN_MAP = {
"Avg Action Completion": "Avg AC",
"Avg Tool Selection Quality": "Avg TSQ",
"Avg Session Cost": "Avg Total Cost",
} |