Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create app.py
Browse files
app.py
CHANGED
@@ -1,333 +1,82 @@
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
-
import datetime
|
4 |
import requests
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
CONTACT_DATASET = f"{OWNER}/contact_info"
|
27 |
-
RESULTS_DATASET = f"{OWNER}/results_public"
|
28 |
-
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
|
29 |
-
api = HfApi()
|
30 |
-
|
31 |
-
YEAR_VERSION = "2023"
|
32 |
-
ref_scores_len = {"validation": 165, "test": 301}
|
33 |
-
ref_level_len = {"validation": {1: 53, 2: 86, 3: 26}, "test": {1: 93, 2: 159, 3: 49}}
|
34 |
-
|
35 |
-
os.makedirs("scored", exist_ok=True)
|
36 |
-
|
37 |
-
# Should be False on spaces and True outside
|
38 |
-
LOCAL_DEBUG = False #os.environ.get("system", "") != "spaces"
|
39 |
-
|
40 |
-
# Display the results
|
41 |
-
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
42 |
-
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
43 |
-
def get_dataframe_from_results(eval_results, split):
|
44 |
-
local_df = eval_results[split]
|
45 |
-
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
46 |
-
local_df = local_df.remove_columns(["system_prompt", "url"])
|
47 |
-
local_df = local_df.rename_column("model", "Agent name")
|
48 |
-
local_df = local_df.rename_column("model_family", "Model family")
|
49 |
-
local_df = local_df.rename_column("score", "Average score (%)")
|
50 |
-
for i in [1, 2, 3]:
|
51 |
-
local_df = local_df.rename_column(f"score_level{i}", f"Level {i} score (%)")
|
52 |
-
local_df = local_df.rename_column("date", "Submission date")
|
53 |
-
df = pd.DataFrame(local_df)
|
54 |
-
df = df.sort_values(by=["Average score (%)"], ascending=False)
|
55 |
-
|
56 |
-
numeric_cols = [c for c in local_df.column_names if "score" in c]
|
57 |
-
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
58 |
-
#df = df.style.format("{:.2%}", subset=numeric_cols)
|
59 |
-
|
60 |
-
return df
|
61 |
-
|
62 |
-
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
|
63 |
-
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
64 |
-
|
65 |
-
# Gold answers
|
66 |
-
gold_results = {}
|
67 |
-
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, f"{YEAR_VERSION}_all", token=TOKEN, trust_remote_code=True)
|
68 |
-
gold_results = {split: {row["task_id"]: row for row in gold_dataset[split]} for split in ["test", "validation"]}
|
69 |
-
|
70 |
-
|
71 |
-
def restart_space():
|
72 |
-
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
73 |
-
|
74 |
-
TYPES = ["markdown", "number", "number", "number", "number", "str", "str", "str"]
|
75 |
-
|
76 |
-
def add_new_eval(
|
77 |
-
val_or_test: str,
|
78 |
-
model: str,
|
79 |
-
model_family: str,
|
80 |
-
system_prompt: str,
|
81 |
-
url: str,
|
82 |
-
path_to_file: str,
|
83 |
-
organisation: str,
|
84 |
-
mail: str,
|
85 |
-
profile: gr.OAuthProfile,
|
86 |
-
):
|
87 |
-
try:
|
88 |
-
# Was the profile created less than 2 month ago?
|
89 |
-
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
|
90 |
-
creation_date = json.loads(user_data.content)["createdAt"]
|
91 |
-
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
|
92 |
-
return format_error("This account is not authorized to submit on GAIA.")
|
93 |
-
|
94 |
-
|
95 |
-
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
96 |
-
user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
|
97 |
-
if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
|
98 |
-
return format_error("You already submitted once today, please try again tomorrow.")
|
99 |
-
|
100 |
-
|
101 |
-
is_validation = val_or_test == "validation"
|
102 |
-
# Very basic email parsing
|
103 |
-
_, parsed_mail = parseaddr(mail)
|
104 |
-
if not "@" in parsed_mail:
|
105 |
-
return format_warning("Please provide a valid email adress.")
|
106 |
-
|
107 |
-
print("Adding new eval")
|
108 |
-
|
109 |
-
# Check if the combination model/org already exists and prints a warning message if yes
|
110 |
-
if model.lower() in set([m.lower() for m in eval_results[val_or_test]["model"]]) and organisation.lower() in set([o.lower() for o in eval_results[val_or_test]["organisation"]]):
|
111 |
-
return format_warning("This model has been already submitted.")
|
112 |
-
|
113 |
-
if path_to_file is None:
|
114 |
-
return format_warning("Please attach a file.")
|
115 |
-
|
116 |
-
# SAVE UNSCORED SUBMISSION
|
117 |
-
if LOCAL_DEBUG:
|
118 |
-
print("mock uploaded submission")
|
119 |
-
else:
|
120 |
-
api.upload_file(
|
121 |
-
repo_id=SUBMISSION_DATASET,
|
122 |
-
path_or_fileobj=path_to_file.name,
|
123 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_raw_{datetime.datetime.today()}.jsonl",
|
124 |
-
repo_type="dataset",
|
125 |
-
token=TOKEN
|
126 |
-
)
|
127 |
-
|
128 |
-
# SAVE CONTACT
|
129 |
-
contact_info = {
|
130 |
-
"model": model,
|
131 |
-
"model_family": model_family,
|
132 |
-
"url": url,
|
133 |
-
"organisation": organisation,
|
134 |
-
"username": profile.username,
|
135 |
-
"mail": mail,
|
136 |
-
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
137 |
-
}
|
138 |
-
contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
|
139 |
-
if LOCAL_DEBUG:
|
140 |
-
print("mock uploaded contact info")
|
141 |
-
else:
|
142 |
-
contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)
|
143 |
-
|
144 |
-
# SCORE SUBMISSION
|
145 |
-
file_path = path_to_file.name
|
146 |
-
scores = {"all": 0, 1: 0, 2: 0, 3: 0}
|
147 |
-
num_questions = {"all": 0, 1: 0, 2: 0, 3: 0}
|
148 |
-
task_ids = []
|
149 |
-
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
150 |
-
with open(file_path, 'r') as f:
|
151 |
-
for ix, line in enumerate(f):
|
152 |
-
try:
|
153 |
-
task = json.loads(line)
|
154 |
-
except Exception:
|
155 |
-
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
|
156 |
-
|
157 |
-
if "model_answer" not in task:
|
158 |
-
return format_error(f"Line {ix} contains no model_answer key. Please fix it and resubmit your file.")
|
159 |
-
answer = task["model_answer"]
|
160 |
-
task_id = task["task_id"]
|
161 |
-
try:
|
162 |
-
level = int(gold_results[val_or_test][task_id]["Level"])
|
163 |
-
except KeyError:
|
164 |
-
return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?")
|
165 |
-
|
166 |
-
score = question_scorer(task['model_answer'], gold_results[val_or_test][task_id]["Final answer"])
|
167 |
-
|
168 |
-
scored_file.write(
|
169 |
-
json.dumps({
|
170 |
-
"id": task_id,
|
171 |
-
"model_answer": answer,
|
172 |
-
"score": score,
|
173 |
-
"level": level
|
174 |
-
}) + "\n"
|
175 |
-
)
|
176 |
-
task_ids.append(task_id)
|
177 |
-
|
178 |
-
scores["all"] += score
|
179 |
-
scores[level] += score
|
180 |
-
num_questions["all"] += 1
|
181 |
-
num_questions[level] += 1
|
182 |
-
|
183 |
-
# Check if there's any duplicate in the submission
|
184 |
-
if len(task_ids) != len(set(task_ids)):
|
185 |
-
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
|
186 |
-
|
187 |
-
if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
|
188 |
-
return format_error(f"Your submission has {num_questions[1]} questions for level 1, {num_questions[2]} for level 2, and {num_questions[3]} for level 3, but it should have {ref_level_len[val_or_test][1]}, {ref_level_len[val_or_test][2]}, and {ref_level_len[val_or_test][3]} respectively. Please check your submission.")
|
189 |
-
|
190 |
-
# SAVE SCORED SUBMISSION
|
191 |
-
if LOCAL_DEBUG:
|
192 |
-
print("mock uploaded scored submission")
|
193 |
-
else:
|
194 |
-
api.upload_file(
|
195 |
-
repo_id=SUBMISSION_DATASET,
|
196 |
-
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
197 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
198 |
-
repo_type="dataset",
|
199 |
-
token=TOKEN
|
200 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
203 |
-
if is_validation:
|
204 |
-
api.upload_file(
|
205 |
-
repo_id=SUBMISSION_DATASET_PUBLIC,
|
206 |
-
path_or_fileobj=f"scored/{organisation}_{model}.jsonl",
|
207 |
-
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_{val_or_test}_scored_{datetime.datetime.today()}.jsonl",
|
208 |
-
repo_type="dataset",
|
209 |
-
token=TOKEN
|
210 |
-
)
|
211 |
-
|
212 |
-
# SAVE TO LEADERBOARD DATA
|
213 |
-
eval_entry = {
|
214 |
-
"model": model,
|
215 |
-
"model_family": model_family,
|
216 |
-
"system_prompt": system_prompt,
|
217 |
-
"url": url,
|
218 |
-
"organisation": organisation,
|
219 |
-
"score": scores["all"]/ref_scores_len[val_or_test],
|
220 |
-
"score_level1": scores[1]/num_questions[1],
|
221 |
-
"score_level2": scores[2]/num_questions[2],
|
222 |
-
"score_level3": scores[3]/num_questions[3],
|
223 |
-
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
224 |
-
}
|
225 |
-
if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
|
226 |
-
return format_error(f"Your submission has {len(scores['all'])} questions for the {val_or_test} set, but it should have {ref_scores_len[val_or_test]}. Please check your submission.")
|
227 |
-
# Catching spam submissions of 100%
|
228 |
-
if all((eval_entry[k] == 1 for k in ["score_level1", "score_level2", "score_level3"])):
|
229 |
-
return format_error(f"There was a problem with your submission. Please open a discussion.")
|
230 |
-
|
231 |
-
# Testing for duplicates - to see if we want to add something like it as it would allow people to try to see the content of other submissions
|
232 |
-
#eval_entry_no_date = {k: v for k, v in eval_entry if k != "date"}
|
233 |
-
#columns_no_date = [c for c in eval_results[val_or_test].column_names if c != "date"]
|
234 |
-
#if eval_entry_no_date in eval_results[val_or_test].select_columns(columns_no_date):
|
235 |
-
# return format_error(f"Your submission is an exact duplicate from an existing submission.")
|
236 |
-
|
237 |
-
eval_results[val_or_test] = eval_results[val_or_test].add_item(eval_entry)
|
238 |
-
print(eval_results)
|
239 |
-
if LOCAL_DEBUG:
|
240 |
-
print("mock uploaded results to lb")
|
241 |
-
else:
|
242 |
-
eval_results.push_to_hub(RESULTS_DATASET, config_name = YEAR_VERSION, token=TOKEN)
|
243 |
-
|
244 |
-
|
245 |
-
return format_log(f"Model {model} submitted by {organisation} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
|
246 |
-
except Exception as e:
|
247 |
-
print(e)
|
248 |
-
return format_error(f"An error occurred, please open a discussion and indicate at what time you encountered the error.\n")
|
249 |
-
|
250 |
-
|
251 |
-
def refresh():
|
252 |
-
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS,trust_remote_code=True)
|
253 |
-
eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
|
254 |
-
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
255 |
-
return eval_dataframe_val, eval_dataframe_test
|
256 |
-
|
257 |
-
def upload_file(files):
|
258 |
-
file_paths = [file.name for file in files]
|
259 |
-
return file_paths
|
260 |
-
|
261 |
-
|
262 |
-
demo = gr.Blocks()
|
263 |
-
with demo:
|
264 |
-
gr.HTML(TITLE)
|
265 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
266 |
|
267 |
with gr.Row():
|
268 |
-
|
269 |
-
|
270 |
-
value=CITATION_BUTTON_TEXT,
|
271 |
-
label=CITATION_BUTTON_LABEL,
|
272 |
-
elem_id="citation-button",
|
273 |
-
) #.style(show_copy_button=True)
|
274 |
|
275 |
-
|
276 |
-
leaderboard_table_test = gr.components.Dataframe(
|
277 |
-
value=eval_dataframe_test, datatype=TYPES, interactive=False,
|
278 |
-
column_widths=["20%"]
|
279 |
-
)
|
280 |
-
with gr.Tab("Results: Validation"):
|
281 |
-
leaderboard_table_val = gr.components.Dataframe(
|
282 |
-
value=eval_dataframe_val, datatype=TYPES, interactive=False,
|
283 |
-
column_widths=["20%"]
|
284 |
-
)
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
outputs=[
|
291 |
-
leaderboard_table_val,
|
292 |
-
leaderboard_table_test,
|
293 |
-
],
|
294 |
-
)
|
295 |
-
with gr.Accordion("Submit a new model for evaluation"):
|
296 |
-
with gr.Row():
|
297 |
-
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
298 |
-
with gr.Row():
|
299 |
-
with gr.Column():
|
300 |
-
level_of_test = gr.Radio(["validation", "test"], value="validation", label="Split")
|
301 |
-
model_name_textbox = gr.Textbox(label="Agent name")
|
302 |
-
model_family_textbox = gr.Textbox(label="Model family")
|
303 |
-
system_prompt_textbox = gr.Textbox(label="System prompt example")
|
304 |
-
url_textbox = gr.Textbox(label="Url to model information")
|
305 |
-
with gr.Column():
|
306 |
-
organisation = gr.Textbox(label="Organisation")
|
307 |
-
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
|
308 |
-
file_output = gr.File()
|
309 |
|
|
|
|
|
|
|
|
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
submit_button = gr.Button("Submit Eval")
|
314 |
-
submission_result = gr.Markdown()
|
315 |
-
submit_button.click(
|
316 |
-
add_new_eval,
|
317 |
-
[
|
318 |
-
level_of_test,
|
319 |
-
model_name_textbox,
|
320 |
-
model_family_textbox,
|
321 |
-
system_prompt_textbox,
|
322 |
-
url_textbox,
|
323 |
-
file_output,
|
324 |
-
organisation,
|
325 |
-
mail
|
326 |
-
],
|
327 |
-
submission_result,
|
328 |
-
)
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
scheduler.start()
|
333 |
-
demo.launch(debug=True)
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
import json
|
|
|
4 |
import requests
|
5 |
+
from openai import OpenAI
|
6 |
+
|
7 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
8 |
+
MODEL = "gpt-4o"
|
9 |
+
|
10 |
+
# Charger questions
|
11 |
+
def load_questions():
|
12 |
+
with open("questions.json", "r", encoding="utf-8") as f:
|
13 |
+
return json.load(f)
|
14 |
+
|
15 |
+
# Générer réponses
|
16 |
+
def generate_answers():
|
17 |
+
questions = load_questions()
|
18 |
+
answers = []
|
19 |
+
|
20 |
+
for q in questions:
|
21 |
+
prompt = f"Réponds précisément à cette question : {q['question']}"
|
22 |
+
try:
|
23 |
+
response = client.chat.completions.create(
|
24 |
+
model=MODEL,
|
25 |
+
messages=[{"role": "user", "content": prompt}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
+
answer = response.choices[0].message.content.strip()
|
28 |
+
except Exception as e:
|
29 |
+
answer = f"Erreur: {str(e)}"
|
30 |
+
answers.append({"task_id": q["task_id"], "question": q["question"], "answer": answer})
|
31 |
+
return answers
|
32 |
+
|
33 |
+
# Affichage lisible
|
34 |
+
def format_display(answers):
|
35 |
+
return "\n\n".join([f"🟨 Q: {a['question']}\n🟩 A: {a['answer']}" for a in answers])
|
36 |
+
|
37 |
+
# Fonction de soumission à GAIA
|
38 |
+
def submit_to_gaia(username, agent_url, answers):
|
39 |
+
payload = {
|
40 |
+
"username": username,
|
41 |
+
"agent_link": agent_url,
|
42 |
+
"answers": [{"task_id": a["task_id"], "answer": a["answer"]} for a in answers]
|
43 |
+
}
|
44 |
+
response = requests.post("https://gaia-benchmark.vercel.app/submit", json=payload)
|
45 |
+
if response.status_code == 200:
|
46 |
+
return f"✅ Soumission réussie ! Score : {response.json().get('score', '?')}"
|
47 |
+
else:
|
48 |
+
return f"❌ Erreur de soumission : {response.text}"
|
49 |
+
|
50 |
+
# Variables de session
|
51 |
+
answers_state = []
|
52 |
+
|
53 |
+
# UI avec Gradio Blocks
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("# 🧠 GAIA Final Agent\nRéponds à 20 questions et soumets-les automatiquement à GAIA")
|
56 |
+
with gr.Row():
|
57 |
+
username_input = gr.Text(label="👤 Nom d'utilisateur Hugging Face")
|
58 |
+
agent_url_input = gr.Text(label="🔗 URL du Space Hugging Face")
|
59 |
|
60 |
+
output_display = gr.Textbox(label="📄 Résultats (réponses générées)", lines=20)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
with gr.Row():
|
63 |
+
gen_btn = gr.Button("🧠 Générer les réponses")
|
64 |
+
submit_btn = gr.Button("📤 Soumettre à GAIA")
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
result_display = gr.Textbox(label="✅ Statut de soumission", lines=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
def handle_generate():
|
69 |
+
global answers_state
|
70 |
+
answers_state = generate_answers()
|
71 |
+
return format_display(answers_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
def handle_submit(username, agent_url):
|
74 |
+
if not answers_state:
|
75 |
+
return "❌ Veuillez d'abord générer les réponses."
|
76 |
+
return submit_to_gaia(username, agent_url, answers_state)
|
77 |
|
78 |
+
gen_btn.click(fn=handle_generate, outputs=output_display)
|
79 |
+
submit_btn.click(fn=handle_submit, inputs=[username_input, agent_url_input], outputs=result_display)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
if __name__ == "__main__":
|
82 |
+
demo.launch()
|
|
|
|