File size: 7,976 Bytes
a9d81c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
U-Net based DIE model for cleaning document.
"""

import os
from typing import Callable

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, in_channels, out_channels, mid_channels=None):
        super().__init__()
        if not mid_channels:
            mid_channels = out_channels
        self.double_conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        return self.double_conv(x)


class Down(nn.Module):
    """Downscaling with maxpool then double conv"""

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.maxpool_conv = nn.Sequential(
            nn.MaxPool2d(2),
            DoubleConv(in_channels, out_channels)
        )

    def forward(self, x):
        return self.maxpool_conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    def __init__(self, in_channels, out_channels, bilinear=True):
        super().__init__()

        # if bilinear, use the normal convolutions to reduce the number of channels
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = x2.size()[2] - x1.size()[2]
        diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
                        diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class OutConv(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(OutConv, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)

    def forward(self, x):
        x = self.conv(x)
        x = torch.sigmoid(x)
        return x


class UNet(nn.Module):
    def __init__(self, n_channels, output_channel_dim=1, bilinear=False):
        super(UNet, self).__init__()
        self.n_channels = n_channels
        self.n_classes = output_channel_dim
        self.bilinear = bilinear

        self.inc = DoubleConv(n_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        factor = 2 if bilinear else 1
        self.down4 = Down(512, 1024 // factor)
        self.up1 = Up(1024, 512 // factor, bilinear)
        self.up2 = Up(512, 256 // factor, bilinear)
        self.up3 = Up(256, 128 // factor, bilinear)
        self.up4 = Up(128, 64, bilinear)
        self.outc = OutConv(64, output_channel_dim)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.outc(x)
        return logits


def add_gaussian_noise(
    data: torch.Tensor
) -> torch.Tensor:
    """
    Adding gaussian noise to torch tensor.
    :param data: torch tensor
    :return: noise perturbed tensor
    """

    data_with_noise = data.clone()
    data_with_noise += torch.normal(mean=0, std=0.05, size=data_with_noise.shape).to(data_with_noise.device)
    data_with_noise = data_with_noise.clip(min=0, max=1)

    return data_with_noise


def inference_model(
    model: Callable,
    model_input: torch.Tensor,
    device: str | torch.device,
    num_of_iterations: int = 1
) -> list[torch.Tensor, ...]:
    """
    Performing model inference.
    :param model: image pre-processing model
    :param model_input: data to model
    :param device: cuda device
    :param num_of_iterations: defines how many times feed the network (recursively)
    :return: predictions
    """

    # inference model
    with torch.no_grad():

        prediction_list = []

        model_input = model_input.to(device)

        if len(model_input.shape) == 3:
            model_input = model_input.unsqueeze(dim=0)

        model_input_original_part = model_input[:, 0:3, ...]

        for i in range(num_of_iterations):

            if i == 0:
                model_input = add_gaussian_noise(model_input)
                prediction = model(model_input)
                prediction_list.append(prediction)
                model_input_new = torch.cat((model_input_original_part, prediction.detach()), dim=1)
            else:
                model_input_perturbed = add_gaussian_noise(model_input_new)
                prediction = model(model_input_perturbed)
                prediction_list.append(prediction)
                model_input_new = torch.cat((model_input_original_part, prediction.detach()), dim=1)

    return prediction_list


def load_unet(
    model_path: str,
    device: str = 'cpu',
    eval_mode: bool = False,
    n_channels: int = 4,
    bilinear: bool = False,
    output_channel_dim: int = 1
):

    print("Loading UNet model...")

    # image preprocessing model
    model = UNet(
        n_channels=n_channels,
        bilinear=bilinear,
        output_channel_dim=output_channel_dim
    )

    # this hack is required due to distributed data parallel training
    state_dict = torch.load(os.path.join(model_path), map_location=device)
    new_state_dict = {key.replace('module.', ''): value for key, value in state_dict.items()}
    model.load_state_dict(new_state_dict)
    model.to(device)

    if eval_mode:
        model.eval()

    return model


class UNetDIEModel:
    """
    Class for Document Image Enhancement with U-Net.
    """

    def __init__(
        self,
        *args,
        **kwargs
    ):
        """
        Initialization.
        """

        self.args = kwargs['args']

        # loading text detector model
        self.die = load_unet(
            model_path=self.args.die_model_path,
            device=self.args.device,
            eval_mode=True,
        )

    def enhance_document_image(
        self,
        image_raw_list: list[Image.Image],
        num_of_die_iterations: int = 1,
    ) -> list[Image.Image]:
        """"
        Enhance document image by removing noise.
        :param image_raw_list: original document page to process
        :param num_of_die_iterations: number of DIE iterations
        :return: cleaned document page to process
        """

        with torch.no_grad():

            # image_die = torch.stack(image_die_list, dim=0)
            image_die = torch.stack(image_raw_list, dim=0)

            # document image enhancement
            prediction_list = inference_model(
                model=self.die,
                model_input=image_die,
                num_of_iterations=num_of_die_iterations,
                device=self.args.device
            )

            # transform DIE model output to image and apply post-processing
            last_prediction = prediction_list[-1]
            batch_size = last_prediction.size(0)
            image_die_list = [T.ToPILImage()(last_prediction[idx, ...]).convert('RGB') for idx in range(batch_size)]

            return image_die_list