Spaces:
Sleeping
Sleeping
""" | |
huggingface_hub==0.30.1 | |
transformers==4.48.2 | |
# gradio==5.0.1 | |
gradio==5.23.2 | |
torch==2.5.1 | |
pydantic==2.8.2 | |
""" | |
import gradio as gr | |
print("Gradio version:", gr.__version__) | |
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
import torch | |
from threading import Thread | |
# import os; os.chdir(os.path.dirname(__file__)) | |
model_name = "fzmnm/TinyLili-zh-64M" | |
max_tokens=4096 | |
max_new_tokens=1024 | |
temperature=0.7 | |
top_p=0.95 | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
model.eval() | |
model.generation_config.pad_token_id = tokenizer.eos_token_id | |
def build_input_str(message: str, history: 'list[list[str]]'): | |
history = history + [{'role': 'user', 'content': message}] | |
input_str = tokenizer.apply_chat_template(history, tokenize=False) | |
input_str += '\n<|im_start|>assistant\n' | |
return input_str | |
def stop_criteria(input_str): | |
end_tokens=['<s>','<|im_end|>'] | |
return any(input_str.endswith(end_token) for end_token in end_tokens) | |
def remove_ending(input_str): | |
if input_str.endswith("<|im_end|>"): | |
return input_str[:-10] | |
return input_str | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
input_str = tokenizer.decode(input_ids[0], skip_special_tokens=True) | |
return stop_criteria(input_str) | |
def chat(message, history, temperature): | |
input_str = build_input_str(message, history) | |
input_ids = tokenizer.encode(input_str, return_tensors="pt") | |
input_ids = input_ids[:, -max_tokens:] | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
timeout=10, | |
skip_prompt=True, | |
skip_special_tokens=True) | |
stopping_criteria = StoppingCriteriaList([StopOnTokens()]) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
stopping_criteria=stopping_criteria, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
do_sample=True, | |
temperature=float(temperature), | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
try: | |
output_str = "" | |
for new_str in streamer: | |
output_str += new_str | |
yield remove_ending(output_str) | |
t.join() | |
finally: | |
if t.is_alive(): | |
print('Canceling thread...') | |
t.join(timeout=1) | |
if t.is_alive(): | |
raise RuntimeError("Thread did not terminate properly.") | |
example_strs=[ | |
'北京有什么好玩的? ', | |
'土星上有什么好吃的', | |
'什么是黑洞?', | |
'一个人的目的是否必须要被社会认可?', | |
'奶奶今年八十岁了,可她还是坚持一个人住乡下,说那是她的根。我们全家都劝她搬来城市,可她总说“住得舒服,比啥都重要”。但她上个月摔了一跤,脚还没完全好,万一再出事怎么办?她那么倔,我们还能怎么劝呢?', | |
] | |
app = gr.ChatInterface( | |
fn=chat, | |
type='messages', | |
examples=[[s,temperature] for s in example_strs], | |
title='聊天机器人', | |
stop_btn=True, | |
# run_examples_on_click=False, # there is a bug with example questions that it does not toggle stop_btn on. toggling this option can circumvent this issue. however, it is not supported in 5.0.1 | |
additional_inputs=[ | |
gr.Slider(minimum=0.1, maximum=4.0, value=temperature, step=0.05, label='Temperature'), | |
], | |
cache_examples=False, | |
) | |
app.queue() | |
if __name__ == "__main__": | |
app.launch() |