|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
from sklearn.metrics import accuracy_score,f1_score |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
import datasets |
|
import torch |
|
|
|
dic = { |
|
'strong negative':"negative", |
|
'moderately negative':"negative", |
|
'mildly negative':"neutral", |
|
'strong positive':"positive", |
|
'moderately positive':"positive", |
|
'mildly positive':'neutral', |
|
'neutral':'neutral', |
|
} |
|
|
|
def format_example(example: dict) -> dict: |
|
context = f"Instruction: {example['instruction']}\n" |
|
if example.get("input"): |
|
context += f"Input: {example['input']}\n" |
|
context += "Answer: " |
|
target = example["output"] |
|
return {"context": context, "target": target} |
|
|
|
def change_target(x): |
|
if 'positive' in x or 'Positive' in x: |
|
return 'positive' |
|
elif 'negative' in x or 'Negative' in x: |
|
return 'negative' |
|
else: |
|
return 'neutral' |
|
|
|
def test_nwgi(model, tokenizer, batch_size = 8, prompt_fun = None ): |
|
dataset = datasets.load_dataset('oliverwang15/news_with_gpt_instructions') |
|
dataset = dataset['test'].to_pandas() |
|
dataset['output'] = dataset['label'].apply(lambda x:dic[x]) |
|
|
|
if prompt_fun is None: |
|
dataset["instruction"] = "What is the sentiment of this news? Please choose an answer from {negative/neutral/positive}." |
|
else: |
|
dataset["instruction"] = dataset.apply(prompt_fun, axis = 1) |
|
dataset["input"] = dataset["news"] |
|
|
|
dataset = dataset[['input', 'output', 'instruction']] |
|
dataset[["context","target"]] = dataset.apply(format_example, axis = 1, result_type="expand") |
|
|
|
|
|
print(f"\n\nPrompt example:\n{dataset['context'][0]}\n\n") |
|
|
|
context = dataset['context'].tolist() |
|
|
|
total_steps = dataset.shape[0]//batch_size + 1 |
|
print(f"Total len: {len(context)}. Batchsize: {batch_size}. Total steps: {total_steps}") |
|
|
|
|
|
out_text_list = [] |
|
for i in tqdm(range(total_steps)): |
|
tmp_context = context[i* batch_size:(i+1)* batch_size] |
|
tokens = tokenizer(tmp_context, return_tensors='pt', padding=True, max_length=512) |
|
|
|
for k in tokens.keys(): |
|
tokens[k] = tokens[k].cuda() |
|
res = model.generate(**tokens, max_length=512) |
|
res_sentences = [tokenizer.decode(i) for i in res] |
|
out_text = [o.split("Answer: ")[1] for o in res_sentences] |
|
out_text_list += out_text |
|
torch.cuda.empty_cache() |
|
|
|
dataset["out_text"] = out_text_list |
|
dataset["new_target"] = dataset["target"].apply(change_target) |
|
dataset["new_out"] = dataset["out_text"].apply(change_target) |
|
|
|
acc = accuracy_score(dataset["new_target"], dataset["new_out"]) |
|
f1_macro = f1_score(dataset["new_target"], dataset["new_out"], average = "macro") |
|
f1_micro = f1_score(dataset["new_target"], dataset["new_out"], average = "micro") |
|
f1_weighted = f1_score(dataset["new_target"], dataset["new_out"], average = "weighted") |
|
|
|
print(f"Acc: {acc}. F1 macro: {f1_macro}. F1 micro: {f1_micro}. F1 weighted (BloombergGPT): {f1_weighted}. ") |
|
|
|
return dataset |
|
|