furqankassa's picture
Duplicate from awacke1/ChatGPT-Memory-Chat-Story-Generator
5971a36
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
OPENAI_API_KEY= os.environ["HF_TOKEN"] # Add a token to this space . Then copy it to the repository secret in this spaces settings panel. os.environ reads from there.
# Keys for Open AI ChatGPT API usage are created from here: https://platform.openai.com/account/api-keys
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): #repetition_penalty, top_k
# 1. Set up a payload
payload = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
# 2. Define your headers and add a key from https://platform.openai.com/account/api-keys
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
# 3. Create a chat counter loop that feeds [Predict next best anything based on last input and attention with memory defined by introspective attention over time]
print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages=[]
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
messages.append(temp1)
messages.append(temp2)
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, #[{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter+=1
# 4. POST it to OPENAI API
history.append(inputs)
print(f"payload is - {payload}")
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
# 5. Iterate through response lines and structure readable response
counter=0
for chunk in response.iter_lines():
if counter == 0:
counter+=1
continue
if chunk.decode() :
chunk = chunk.decode()
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter
def reset_textbox():
return gr.update(value='')
# Episodic and Semantic IO
def list_files(file_path):
import os
icon_csv = "๐Ÿ“„ "
icon_txt = "๐Ÿ“‘ "
current_directory = os.getcwd()
file_list = []
for filename in os.listdir(current_directory):
if filename.endswith(".csv"):
file_list.append(icon_csv + filename)
elif filename.endswith(".txt"):
file_list.append(icon_txt + filename)
if file_list:
return "\n".join(file_list)
else:
return "No .csv or .txt files found in the current directory."
# Function to read a file
def read_file(file_path):
try:
with open(file_path, "r") as file:
contents = file.read()
return f"{contents}"
#return f"Contents of {file_path}:\n{contents}"
except FileNotFoundError:
return "File not found."
# Function to delete a file
def delete_file(file_path):
try:
import os
os.remove(file_path)
return f"{file_path} has been deleted."
except FileNotFoundError:
return "File not found."
# Function to write to a file
def write_file(file_path, content):
try:
with open(file_path, "w") as file:
file.write(content)
return f"Successfully written to {file_path}."
except:
return "Error occurred while writing to file."
# Function to append to a file
def append_file(file_path, content):
try:
with open(file_path, "a") as file:
file.write(content)
return f"Successfully appended to {file_path}."
except:
return "Error occurred while appending to file."
title = """<h1 align="center">Memory Chat Story Generator ChatGPT</h1>"""
description = """
## ChatGPT Datasets ๐Ÿ“š
- WebText
- Common Crawl
- BooksCorpus
- English Wikipedia
- Toronto Books Corpus
- OpenWebText
## ChatGPT Datasets - Details ๐Ÿ“š
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2.
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext)
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3.
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al.
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres.
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al.
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017.
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto.
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze.
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3.
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al.
"""
# 6. Use Gradio to pull it all together
with gr.Blocks(css = """#col_container {width: 1400px; margin-left: auto; margin-right: auto;} #chatbot {height: 600px; overflow: auto;}""") as demo:
gr.HTML(title)
with gr.Column(elem_id = "col_container"):
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
chatbot = gr.Chatbot(elem_id='chatbot')
state = gr.State([])
b1 = gr.Button()
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
chat_counter = gr.Number(value=0, visible=True, precision=0)
# Episodic/Semantic IO
fileName = gr.Textbox(label="Filename")
fileContent = gr.TextArea(label="File Content")
completedMessage = gr.Textbox(label="Completed")
label = gr.Label()
with gr.Row():
listFiles = gr.Button("๐Ÿ“„ List File(s)")
readFile = gr.Button("๐Ÿ“– Read File")
saveFile = gr.Button("๐Ÿ’พ Save File")
deleteFile = gr.Button("๐Ÿ—‘๏ธ Delete File")
appendFile = gr.Button("โž• Append File")
listFiles.click(list_files, inputs=fileName, outputs=fileContent)
readFile.click(read_file, inputs=fileName, outputs=fileContent)
saveFile.click(write_file, inputs=[fileName, fileContent], outputs=completedMessage)
deleteFile.click(delete_file, inputs=fileName, outputs=completedMessage)
appendFile.click(append_file, inputs=[fileName, fileContent], outputs=completedMessage )
inputs.submit(predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter])
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter])
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue().launch(debug=True)