Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import fitz # PyMuPDF | |
from transformers import AutoTokenizer, pipeline, AutoModelForSeq2SeqLM | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.prompts import PromptTemplate | |
# For Fairness Audit | |
import pandas as pd | |
from aif360.datasets import StandardDataset | |
from aif360.metrics import BinaryLabelDatasetMetric | |
# --- Page Configuration --- | |
st.set_page_config( | |
page_title="Sahay AI ๐ฎ๐ณ", | |
page_icon="๐ค", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# --- Caching for Performance --- | |
def load_llm(): | |
"""Loads the smaller, CPU-friendly model (FLAN-T5-Base).""" | |
llm_model_name = "google/flan-t5-base" | |
tokenizer = AutoTokenizer.from_pretrained(llm_model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(llm_model_name) | |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512) | |
return HuggingFacePipeline(pipeline=pipe) | |
def load_and_process_pdf(pdf_path): | |
"""Loads and embeds the PDF using IBM's multilingual model.""" | |
try: | |
doc = fitz.open(pdf_path) | |
text = "".join(page.get_text() for page in doc) | |
if not text: | |
st.error("Could not extract text from PDF.") | |
return None | |
except Exception as e: | |
st.error(f"Error reading PDF: {e}. Ensure 'PMKisanSamanNidhi.PDF' is in the main project directory.") | |
return None | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) | |
docs = text_splitter.create_documents([text]) | |
embedding_model = HuggingFaceEmbeddings(model_name="ibm-granite/granite-embedding-278m-multilingual") | |
vector_db = FAISS.from_documents(docs, embedding_model) | |
return vector_db | |
# --- Conversational Chain --- | |
def create_conversational_chain(_llm, _vector_db): | |
prompt_template = """You are a polite AI assistant for the PM-KISAN scheme. Use the context to answer the question precisely. If the question is not related to the context, state that you can only answer questions about the PM-KISAN scheme. Do not make up information. | |
Context: {context} | |
Question: {question} | |
Helpful Answer:""" | |
QA_PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key='answer') | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=_llm, retriever=_vector_db.as_retriever(search_kwargs={'k': 3}), | |
memory=memory, return_source_documents=True, combine_docs_chain_kwargs={"prompt": QA_PROMPT} | |
) | |
return chain | |
# --- IBM AIF360 Fairness Audit --- | |
def run_fairness_audit(): | |
st.subheader("๐ค IBM AIF360 - Fairness Audit") | |
st.info("A simulation to check for bias in our information retriever.") | |
df_display = pd.DataFrame({'gender_text': ['male', 'male', 'female', 'female']}) | |
df_for_aif = pd.DataFrame() | |
df_for_aif['gender'] = df_display['gender_text'].map({'male': 1, 'female': 0}) | |
df_for_aif['favorable_outcome'] = [1, 1, 1, 1] | |
aif_dataset = StandardDataset(df_for_aif, label_name='favorable_outcome', favorable_classes=[1], | |
protected_attribute_names=['gender'], privileged_classes=[[1]]) | |
metric = BinaryLabelDatasetMetric(aif_dataset, unprivileged_groups=[{'gender': 0}], privileged_groups=[{'gender': 1}]) | |
spd = metric.statistical_parity_difference() | |
st.metric(label="**Statistical Parity Difference (SPD)**", value=f"{spd:.4f}") | |
# --- Main Application UI --- | |
if __name__ == "__main__": | |
with st.sidebar: | |
st.image("https://upload.wikimedia.org/wikipedia/commons/5/51/IBM_logo.svg", width=100) | |
st.title("๐ฎ๐ณ Sahay AI") | |
st.markdown("An AI assistant for the **PM-KISAN** scheme, built with IBM's multilingual embedding model.") | |
if st.button("Run Fairness Audit", use_container_width=True): | |
st.session_state.run_audit = True | |
st.header("Chat with Sahay AI ๐ฌ") | |
st.markdown("Your trusted guide to the PM-KISAN scheme.") | |
if st.session_state.get('run_audit', False): | |
run_fairness_audit() | |
st.session_state.run_audit = False | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "Welcome! How can I help you today?"}] | |
if "qa_chain" not in st.session_state: | |
with st.spinner("๐ Initializing Sahay AI..."): | |
llm = load_llm() | |
vector_db = load_and_process_pdf("PMKisanSamanNidhi.PDF") | |
if vector_db: | |
st.session_state.qa_chain = create_conversational_chain(llm, vector_db) | |
else: | |
st.error("Application could not start. Is the PDF uploaded?") | |
st.stop() | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if prompt := st.chat_input("Ask a question..."): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
with st.spinner("๐ง Thinking..."): | |
result = st.session_state.qa_chain.invoke({"question": prompt}) | |
response = result["answer"] | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) |