import gradio as gr import spaces import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_video pipe = LTXConditionPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-diffusers", torch_dtype=torch.bfloat16) pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16) pipe.to("cuda") pipe_upsample.to("cuda") pipe.vae.enable_tiling() def round_to_nearest_resolution_acceptable_by_vae(height, width): height = height - (height % pipe.vae_temporal_compression_ratio) width = width - (width % pipe.vae_temporal_compression_ratio) return height, width @spaces.GPU def generate(prompt, negative_prompt, steps, seed): return with gr.Blocks() as demo: gr.Markdown("# LTX Video 0.9.7 Distilled") prompt = gr.Textbox(label="prompt") output = gr.Video(interactive=False) run_button = gr.Button() with gr.Accordion("Advanced settings", open=False): n_prompt = gr.Textbox(label="negative prompt", value="", visible=False) with gr.Row(): seed = gr.Number(label="seed", value=0, precision=0) randomize_seed = gr.Checkbox(label="randomize seed") with gr.Row(): steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1) num_frames = gr.Slider(label="# frames", minimum=1, maximum=30, value=8, step=1) demo.launch()