import gradio as gr import spaces import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_video pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16) pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16) pipe.to("cuda") pipe_upsample.to("cuda") pipe.vae.enable_tiling() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def round_to_nearest_resolution_acceptable_by_vae(height, width): height = height - (height % pipe.vae_temporal_compression_ratio) width = width - (width % pipe.vae_temporal_compression_ratio) return height, width @spaces.GPU def generate(prompt, negative_prompt, image, steps, num_frames, seed, randomize_seed, t2v, progress=gr.Progress(track_tqdm=True)): expected_height, expected_width = 768, 1152 downscale_factor = 2 / 3 if randomize_seed: seed = random.randint(0, MAX_SEED) if image is not None or t2v: condition1 = LTXVideoCondition(video=image, frame_index=0) else: condition1 = None # Part 1. Generate video at smaller resolution # Text-only conditioning is also supported without the need to pass `conditions` downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) latents = pipe( conditions=condition1, prompt=prompt, negative_prompt=negative_prompt, # width=downscaled_width, # height=downscaled_height, num_frames=num_frames, num_inference_steps=steps, decode_timestep = 0.05, decode_noise_scale = 0.025, generator=torch.Generator().manual_seed(seed), #output_type="latent", ).frames # Part 2. Upscale generated video using latent upsampler with fewer inference steps # The available latent upsampler upscales the height/width by 2x # upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 # upscaled_latents = pipe_upsample( # latents=latents, # output_type="latent" # ).frames # # Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) # video = pipe( # conditions=condition1, # prompt=prompt, # negative_prompt=negative_prompt, # width=upscaled_width, # height=upscaled_height, # num_frames=num_frames, # denoise_strength=0.4, # Effectively, 4 inference steps out of 10 # num_inference_steps=10, # latents=upscaled_latents, # decode_timestep=0.05, # image_cond_noise_scale=0.025, # generator=torch.Generator().manual_seed(seed), # output_type="pil", # ).frames[0] # Part 4. Downscale the video to the expected resolution video = [frame.resize((expected_width, expected_height)) for frame in latents[0]] export_to_video(latents, "output.mp4", fps=24) return "output.mp4" css=""" #col-container { margin: 0 auto; max-width: 900px; } """ js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo: gr.Markdown("# LTX Video 0.9.7 Distilled") with gr.Row(): with gr.Column(): with gr.Group(): image = gr.Image(label="") prompt = gr.Textbox(label="prompt") t2v = gr.Checkbox(label="run text-to-video", value=False) run_button = gr.Button() with gr.Column(): output = gr.Video(interactive=False) with gr.Accordion("Advanced settings", open=False): negative_prompt = gr.Textbox(label="negative prompt", value="", visible=False) with gr.Row(): seed = gr.Number(label="seed", value=0, precision=0) randomize_seed = gr.Checkbox(label="randomize seed") with gr.Row(): steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1) num_frames = gr.Slider(label="# frames", minimum=1, maximum=200, value=161, step=1) run_button.click(fn=generate, inputs=[prompt, negative_prompt, image, steps, num_frames, seed, randomize_seed, t2v], outputs=[output]) demo.launch()