--- tags: [gradio-custom-component, Video, Audio, streaming, webrtc, realtime] title: gradio_webrtc short_description: Stream audio/video in realtime with webrtc colorFrom: blue colorTo: yellow sdk: gradio pinned: false ---

Gradio WebRTC ⚡️

Static Badge Static Badge

Stream video and audio in real time with Gradio using WebRTC.

## Installation ```bash pip install gradio_webrtc ``` ## Examples: 1. [Object Detection from Webcam with YOLOv10](https://huggingface.co/spaces/freddyaboulton/webrtc-yolov10n) 📷 2. [Streaming Object Detection from Video with RT-DETR](https://huggingface.co/spaces/freddyaboulton/rt-detr-object-detection-webrtc) 🎥 3. [Text-to-Speech](https://huggingface.co/spaces/freddyaboulton/parler-tts-streaming-webrtc) 🗣️ ## Usage The WebRTC component supports the following three use cases: 1. Streaming video from the user webcam to the server and back 2. Streaming Video from the server to the client 3. Streaming Audio from the server to the client Streaming Audio from client to the server and back (conversational AI) is not supported yet. ## Streaming Video from the User Webcam to the Server and Back ```python import gradio as gr from gradio_webrtc import WebRTC def detection(image, conf_threshold=0.3): ... your detection code here ... with gr.Blocks() as demo: image = WebRTC(label="Stream", mode="send-receive", modality="video") conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.30, ) image.stream( fn=detection, inputs=[image, conf_threshold], outputs=[image], time_limit=10 ) if __name__ == "__main__": demo.launch() ``` * Set the `mode` parameter to `send-receive` and `modality` to "video". * The `stream` event's `fn` parameter is a function that receives the next frame from the webcam as a **numpy array** and returns the processed frame also as a **numpy array**. * Numpy arrays are in (height, width, 3) format where the color channels are in RGB format. * The `inputs` parameter should be a list where the first element is the WebRTC component. The only output allowed is the WebRTC component. * The `time_limit` parameter is the maximum time in seconds the video stream will run. If the time limit is reached, the video stream will stop. ## Streaming Video from the User Webcam to the Server and Back ```python import gradio as gr from gradio_webrtc import WebRTC import cv2 def generation(): url = "https://download.tsi.telecom-paristech.fr/gpac/dataset/dash/uhd/mux_sources/hevcds_720p30_2M.mp4" cap = cv2.VideoCapture(url) iterating = True while iterating: iterating, frame = cap.read() yield frame with gr.Blocks() as demo: output_video = WebRTC(label="Video Stream", mode="receive", modality="video") button = gr.Button("Start", variant="primary") output_video.stream( fn=generation, inputs=None, outputs=[output_video], trigger=button.click ) if __name__ == "__main__": demo.launch() ``` * Set the "mode" parameter to "receive" and "modality" to "video". * The `stream` event's `fn` parameter is a generator function that yields the next frame from the video as a **numpy array**. * The only output allowed is the WebRTC component. * The `trigger` parameter the gradio event that will trigger the webrtc connection. In this case, the button click event. ## Streaming Audio from the Server to the Client ```python import gradio as gr from pydub import AudioSegment def generation(num_steps): for _ in range(num_steps): segment = AudioSegment.from_file("/Users/freddy/sources/gradio/demo/audio_debugger/cantina.wav") yield (segment.frame_rate, np.array(segment.get_array_of_samples()).reshape(1, -1)) with gr.Blocks() as demo: audio = WebRTC(label="Stream", mode="receive", modality="audio") num_steps = gr.Slider( label="Number of Steps", minimum=1, maximum=10, step=1, value=5, ) button = gr.Button("Generate") audio.stream( fn=generation, inputs=[num_steps], outputs=[audio], trigger=button.click ) ``` * Set the "mode" parameter to "receive" and "modality" to "audio". * The `stream` event's `fn` parameter is a generator function that yields the next audio segment as a tuple of (frame_rate, audio_samples). * The numpy array should be of shape (1, num_samples). * The `outputs` parameter should be a list with the WebRTC component as the only element. ## Deployment When deploying in a cloud environment (like Hugging Face Spaces, EC2, etc), you need to set up a TURN server to relay the WebRTC traffic. The easiest way to do this is to use a service like Twilio. ```python from twilio.rest import Client import os account_sid = os.environ.get("TWILIO_ACCOUNT_SID") auth_token = os.environ.get("TWILIO_AUTH_TOKEN") client = Client(account_sid, auth_token) token = client.tokens.create() rtc_configuration = { "iceServers": token.ice_servers, "iceTransportPolicy": "relay", } with gr.Blocks() as demo: ... rtc = WebRTC(rtc_configuration=rtc_configuration, ...) ... ```