Spaces:
Runtime error
Runtime error
File size: 15,967 Bytes
0140c70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import gc
import json
import time
import requests
import base64
import uvicorn
import argparse
import torch
from transformers import AutoModelForCausalLM, LlamaTokenizer, PreTrainedModel, PreTrainedTokenizer, \
TextIteratorStreamer, CodeGenTokenizerFast as Tokenizer
from contextlib import asynccontextmanager
from loguru import logger
from typing import List, Literal, Union, Tuple, Optional
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from PIL import Image
from io import BytesIO
import os
import re
from threading import Thread
from moondream import Moondream, detect_device
import omnichat
# 请求
class TextContent(BaseModel):
type: Literal["text"]
text: str
class ImageUrl(BaseModel):
url: str
class ImageUrlContent(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl
ContentItem = Union[TextContent, ImageUrlContent]
class ChatMessageInput(BaseModel):
role: Literal["user", "assistant", "system"]
content: Union[str, List[ContentItem]]
name: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessageInput]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
# Additional parameters
repetition_penalty: Optional[float] = 1.0
# 响应
class ChatMessageResponse(BaseModel):
role: Literal["assistant"]
content: str = None
name: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessageResponse
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
# 图片输入处理
def process_img(input_data):
if isinstance(input_data, str):
# URL
if input_data.startswith("http://") or input_data.startswith("https://"):
response = requests.get(input_data)
image_data = response.content
pil_image = Image.open(BytesIO(image_data)).convert('RGB')
# base64
elif input_data.startswith("data:image/"):
base64_data = input_data.split(",")[1]
image_data = base64.b64decode(base64_data)
pil_image = Image.open(BytesIO(image_data)).convert('RGB')
# img_path
else:
pil_image = Image.open(input_data)
# PIL
elif isinstance(input_data, Image.Image):
pil_image = input_data
else:
raise ValueError("data type error")
return pil_image
# 历史消息处理
def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[
Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]:
formatted_history = []
image_list = []
last_user_query = ''
for i, message in enumerate(messages):
role = message.role
content = message.content
if isinstance(content, list): # text
text_content = ' '.join(item.text for item in content if isinstance(item, TextContent))
else:
text_content = content
if isinstance(content, list): # image
for item in content:
if isinstance(item, ImageUrlContent):
image_url = item.image_url.url
image = process_img(image_url)
image_list.append(image)
if role == 'user':
if i == len(messages) - 1: # last message
last_user_query = text_content
else:
formatted_history.append((text_content, ''))
elif role == 'assistant':
if formatted_history:
if formatted_history[-1][1] != '':
assert False, f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}"
formatted_history[-1] = (formatted_history[-1][0], text_content)
else:
assert False, f"assistant reply before user"
else:
assert False, f"unrecognized role: {role}"
return last_user_query, formatted_history, image_list
@torch.inference_mode()
# Moondrean推理
def generate_stream_moondream(params: dict):
global model, tokenizer
# 输入处理
def chat_history_to_prompt(history):
prompt = ""
for i, (old_query, response) in enumerate(history):
prompt += f"Question: {old_query}\n\nAnswer: {response}\n\n"
return prompt
messages = params["messages"]
prompt, formatted_history, image_list = process_history_and_images(messages)
history = chat_history_to_prompt(formatted_history)
# 只处理最后一张图
img = image_list[-1]
# 构建输入
'''
answer_question(
self,
image_embeds,
question,
tokenizer,
chat_history="",
result_queue=None,
**kwargs,
)
'''
image_embeds = model.encode_image(img)
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
gen_kwargs = {
"image_embeds": image_embeds,
"question": prompt,
"tokenizer": tokenizer,
"chat_history": history,
"result_queue": None,
"streamer": streamer,
}
thread = Thread(
target=model.answer_question,
kwargs=gen_kwargs,
)
input_echo_len = 0
total_len = 0
# 启动推理
thread.start()
buffer = ""
for new_text in streamer:
clean_text = re.sub("<$|END$", "", new_text)
buffer += clean_text
yield {
"text": buffer.strip("<END"),
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
generated_ret ={
"text": buffer.strip("<END"),
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
yield generated_ret
# Moondrean单次响应
def generate_moondream(params: dict):
for response in generate_stream_moondream(params):
pass
return response
@torch.inference_mode()
# CogVLM推理
def generate_stream_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
"""
Generates a stream of responses using the CogVLM model in inference mode.
It's optimized to handle continuous input-output interactions with the model in a streaming manner.
"""
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
query, history, image_list = process_history_and_images(messages)
logger.debug(f"==== request ====\n{query}")
# only can slove the latest picture
input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history,
images=[image_list[-1]])
inputs = {
'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]],
}
if 'cross_images' in input_by_model and input_by_model['cross_images']:
inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]]
input_echo_len = len(inputs["input_ids"][0])
streamer = TextIteratorStreamer(tokenizer=tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"do_sample": False,
"top_p": top_p,
'streamer': streamer,
}
if temperature > 1e-5:
gen_kwargs["temperature"] = temperature
total_len = 0
generated_text = ""
with torch.no_grad():
model.generate(**inputs, **gen_kwargs)
for next_text in streamer:
generated_text += next_text
yield {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
ret = {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
yield ret
# CogVLM单次响应
def generate_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
for response in generate_stream_cogvlm(model, tokenizer, params):
pass
return response
def generate_minicpm(model, params):
messages = params["messages"]
query, history, image_list = process_history_and_images(messages)
msgs = history
msgs.append({'role': 'user', 'content': query})
image = image_list[-1]
# image is a PIL image
buffer = BytesIO()
image.save(buffer, format="JPEG") # You can adjust the format as needed
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read())
image_base64_str = image_base64.decode("utf-8")
input = {'image': image_base64_str, 'question': json.dumps(msgs)}
generation = model.chat(input)
response = {"text": generation, "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}}
print(response)
return response
# 流式响应
async def predict(model_id: str, params: dict):
return "no stream"
torch.set_grad_enabled(False)
# 生命周期管理器,结束清显存
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
# 允许跨域
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 对话路由
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer
# 检查请求
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
)
# 流式响应
if request.stream:
generate = predict(request.model, gen_params)
return
# 单次响应
if STATE_MOD == "cog":
response = generate_cogvlm(model, tokenizer, gen_params)
elif STATE_MOD == "moon":
response = generate_moondream(gen_params)
elif STATE_MOD == "mini":
response = generate_minicpm(model, gen_params)
usage = UsageInfo()
message = ChatMessageResponse(
role="assistant",
content=response["text"],
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
)
task_usage = UsageInfo.model_validate(response["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)
# 模型切换路由配置
STATE_MOD = "moon"
MODEL_PATH = ""
# 模型加载
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_mod(model_input, mod_type):
global model, tokenizer, language_processor_version
if mod_type == "cog":
tokenizer_path = os.environ.get("TOKENIZER_PATH", 'lmsys/vicuna-7b-v1.5')
tokenizer = LlamaTokenizer.from_pretrained(
tokenizer_path,
trust_remote_code=True,
signal_type=language_processor_version
)
if 'cuda' in DEVICE:
model = AutoModelForCausalLM.from_pretrained(
model_input,
trust_remote_code=True,
load_in_4bit=True,
torch_dtype=torch_type,
low_cpu_mem_usage=True
).eval()
else:
model = AutoModelForCausalLM.from_pretrained(
model_input,
trust_remote_code=True
).float().to(DEVICE).eval()
elif mod_type == "moon":
device, dtype = detect_device()
model = Moondream.from_pretrained(model_input).to(device=device, dtype=dtype).eval()
tokenizer = Tokenizer.from_pretrained(model_input)
elif mod_type == "mini":
model, tokenizer = omnichat.OmniLMMChat(model_input), None
@app.post("/v1/Cog-vqa")
async def switch_vqa():
global model, STATE_MOD, mod_vqa, language_processor_version
STATE_MOD = "cog"
del model
model = None
language_processor_version = "chat_old"
load_mod(mod_vqa, STATE_MOD)
@app.post("/v1/Cog-chat")
async def switch_chat():
global model, STATE_MOD, mod_chat, language_processor_version
STATE_MOD = "cog"
del model
model = None
language_processor_version = "chat"
load_mod(mod_chat, STATE_MOD)
@app.post("/v1/moondream")
async def switch_moon():
global model, STATE_MOD, mod_moon
STATE_MOD = "moon"
del model
model = None
load_mod(mod_moon, STATE_MOD)
@app.post("/v1/MiniCPM")
async def switch_mini():
global model, STATE_MOD, mod_mini
STATE_MOD = "mini"
del model
model = None
load_mod(mod_mini, STATE_MOD)
# 关闭
@app.post("/v1/close")
async def close():
global model
del model
model = None
gc.collect()
parser = argparse.ArgumentParser()
parser.add_argument("--mod", type=str, default="moondrean")
args = parser.parse_args()
mod = args.mod
mod_vqa = './models/cogagent-vqa-hf'
mod_chat = './models/cogagent-chat-hf'
mod_moon = './models/moondream'
mod_mini = './models/MiniCPM-Llama3-V-2_5'
'''
mod_list = [
"moondrean",
"Cog-vqa",
"Cog-chat"
"MiniCPM"
]
'''
if mod == "Cog-vqa":
STATE_MOD = "cog"
MODEL_PATH = mod_vqa
language_processor_version = "chat_old"
elif mod == "Cog-chat":
STATE_MOD = "cog"
MODEL_PATH = mod_chat
language_processor_version = "chat"
elif mod == "moondream":
STATE_MOD = "moon"
MODEL_PATH = mod_moon
elif mod == "MiniCPM":
STATE_MOD = "mini"
MODEL_PATH = mod_mini
if __name__ == "__main__":
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
torch_type = torch.bfloat16
else:
torch_type = torch.float16
print("========Use torch type as:{} with device:{}========\n\n".format(torch_type, DEVICE))
load_mod(MODEL_PATH, STATE_MOD)
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|