File size: 15,967 Bytes
0140c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import gc
import json
import time
import requests
import base64
import uvicorn
import argparse

import torch
from transformers import AutoModelForCausalLM, LlamaTokenizer, PreTrainedModel, PreTrainedTokenizer, \
TextIteratorStreamer, CodeGenTokenizerFast as Tokenizer

from contextlib import asynccontextmanager
from loguru import logger
from typing import List, Literal, Union, Tuple, Optional

from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field

from PIL import Image
from io import BytesIO

import os
import re
from threading import Thread
from moondream import Moondream, detect_device

import omnichat

# 请求
class TextContent(BaseModel):
    type: Literal["text"]
    text: str
class ImageUrl(BaseModel):
    url: str
class ImageUrlContent(BaseModel):
    type: Literal["image_url"]
    image_url: ImageUrl
ContentItem = Union[TextContent, ImageUrlContent]
class ChatMessageInput(BaseModel):
    role: Literal["user", "assistant", "system"]
    content: Union[str, List[ContentItem]]
    name: Optional[str] = None
class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessageInput]
    temperature: Optional[float] = 0.8
    top_p: Optional[float] = 0.8
    max_tokens: Optional[int] = None
    stream: Optional[bool] = False
    # Additional parameters
    repetition_penalty: Optional[float] = 1.0

# 响应
class ChatMessageResponse(BaseModel):
    role: Literal["assistant"]
    content: str = None
    name: Optional[str] = None
class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessageResponse
class DeltaMessage(BaseModel):
    role: Optional[Literal["user", "assistant", "system"]] = None
    content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
class UsageInfo(BaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
    model: str
    object: Literal["chat.completion", "chat.completion.chunk"]
    choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
    created: Optional[int] = Field(default_factory=lambda: int(time.time()))
    usage: Optional[UsageInfo] = None

# 图片输入处理
def process_img(input_data):
    if isinstance(input_data, str):
        # URL
        if input_data.startswith("http://") or input_data.startswith("https://"):
            response = requests.get(input_data)
            image_data = response.content
            pil_image = Image.open(BytesIO(image_data)).convert('RGB')
        # base64
        elif input_data.startswith("data:image/"):
            base64_data = input_data.split(",")[1]
            image_data = base64.b64decode(base64_data)
            pil_image = Image.open(BytesIO(image_data)).convert('RGB')
        # img_path
        else:
            pil_image = Image.open(input_data)
    # PIL
    elif isinstance(input_data, Image.Image):
        pil_image = input_data
    else:
        raise ValueError("data type error")

    return pil_image

# 历史消息处理
def process_history_and_images(messages: List[ChatMessageInput]) -> Tuple[
    Optional[str], Optional[List[Tuple[str, str]]], Optional[List[Image.Image]]]:
    formatted_history = []
    image_list = []
    last_user_query = ''

    for i, message in enumerate(messages):
        role = message.role
        content = message.content

        if isinstance(content, list):  # text
            text_content = ' '.join(item.text for item in content if isinstance(item, TextContent))
        else:
            text_content = content

        if isinstance(content, list):  # image
            for item in content:
                if isinstance(item, ImageUrlContent):
                    image_url = item.image_url.url
                    image = process_img(image_url)
                    image_list.append(image)

        if role == 'user':
            if i == len(messages) - 1:  # last message
                last_user_query = text_content
            else:
                formatted_history.append((text_content, ''))
        elif role == 'assistant':
            if formatted_history:
                if formatted_history[-1][1] != '':
                    assert False, f"the last query is answered. answer again. {formatted_history[-1][0]}, {formatted_history[-1][1]}, {text_content}"
                formatted_history[-1] = (formatted_history[-1][0], text_content)
            else:
                assert False, f"assistant reply before user"
        else:
            assert False, f"unrecognized role: {role}"

    return last_user_query, formatted_history, image_list

@torch.inference_mode()
# Moondrean推理
def generate_stream_moondream(params: dict):
    global model, tokenizer

    # 输入处理
    def chat_history_to_prompt(history):
        prompt = ""
        for i, (old_query, response) in enumerate(history):
            prompt += f"Question: {old_query}\n\nAnswer: {response}\n\n"
        return prompt

    messages = params["messages"]
    prompt, formatted_history, image_list = process_history_and_images(messages)
    history = chat_history_to_prompt(formatted_history)
    # 只处理最后一张图
    img = image_list[-1]

    # 构建输入
    '''
    answer_question(
            self,
            image_embeds,
            question,
            tokenizer,
            chat_history="",
            result_queue=None,
            **kwargs,
        )
    '''
    image_embeds = model.encode_image(img)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    gen_kwargs = {
            "image_embeds": image_embeds,
            "question": prompt,
            "tokenizer": tokenizer,
            "chat_history": history,
            "result_queue": None,
            "streamer": streamer,
        }

    thread = Thread(
        target=model.answer_question,
        kwargs=gen_kwargs,
    )

    input_echo_len = 0
    total_len = 0
    # 启动推理
    thread.start()
    buffer = ""
    for new_text in streamer:
        clean_text = re.sub("<$|END$", "", new_text)
        buffer += clean_text
        yield {
            "text": buffer.strip("<END"),
            "usage": {
                "prompt_tokens": input_echo_len,
                "completion_tokens": total_len - input_echo_len,
                "total_tokens": total_len,
                },
            }
    generated_ret ={
        "text": buffer.strip("<END"),
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": total_len - input_echo_len,
            "total_tokens": total_len,
            },
        }
    yield generated_ret

# Moondrean单次响应
def generate_moondream(params: dict):
    for response in generate_stream_moondream(params):
        pass
    return response


@torch.inference_mode()
# CogVLM推理
def generate_stream_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):
    """
    Generates a stream of responses using the CogVLM model in inference mode.
    It's optimized to handle continuous input-output interactions with the model in a streaming manner.
    """
    messages = params["messages"]
    temperature = float(params.get("temperature", 1.0))
    repetition_penalty = float(params.get("repetition_penalty", 1.0))
    top_p = float(params.get("top_p", 1.0))
    max_new_tokens = int(params.get("max_tokens", 256))
    query, history, image_list = process_history_and_images(messages)

    logger.debug(f"==== request ====\n{query}")

    #  only can slove the latest picture
    input_by_model = model.build_conversation_input_ids(tokenizer, query=query, history=history,
                                                        images=[image_list[-1]])
    inputs = {
        'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
        'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
        'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
        'images': [[input_by_model['images'][0].to(DEVICE).to(torch_type)]],
    }
    if 'cross_images' in input_by_model and input_by_model['cross_images']:
        inputs['cross_images'] = [[input_by_model['cross_images'][0].to(DEVICE).to(torch_type)]]

    input_echo_len = len(inputs["input_ids"][0])
    streamer = TextIteratorStreamer(tokenizer=tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    gen_kwargs = {
        "repetition_penalty": repetition_penalty,
        "max_new_tokens": max_new_tokens,
        "do_sample": False,
        "top_p": top_p,
        'streamer': streamer,
    }
    if temperature > 1e-5:
        gen_kwargs["temperature"] = temperature

    total_len = 0
    generated_text = ""
    with torch.no_grad():
        model.generate(**inputs, **gen_kwargs)
        for next_text in streamer:
            generated_text += next_text
            yield {
                "text": generated_text,
                "usage": {
                    "prompt_tokens": input_echo_len,
                    "completion_tokens": total_len - input_echo_len,
                    "total_tokens": total_len,
                },
            }
    ret = {
        "text": generated_text,
        "usage": {
            "prompt_tokens": input_echo_len,
            "completion_tokens": total_len - input_echo_len,
            "total_tokens": total_len,
        },
    }
    yield ret

# CogVLM单次响应
def generate_cogvlm(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, params: dict):

    for response in generate_stream_cogvlm(model, tokenizer, params):
        pass
    return response

def generate_minicpm(model, params):
    messages = params["messages"]
    query, history, image_list = process_history_and_images(messages)
    msgs = history
    msgs.append({'role': 'user', 'content': query})
    image = image_list[-1]
    # image is a PIL image
    buffer = BytesIO()
    image.save(buffer, format="JPEG")  # You can adjust the format as needed
    buffer.seek(0)
    image_base64 = base64.b64encode(buffer.read())
    image_base64_str = image_base64.decode("utf-8")
    input = {'image': image_base64_str, 'question': json.dumps(msgs)}
    generation = model.chat(input)
    response = {"text": generation, "usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}}
    print(response)
    return response

# 流式响应
async def predict(model_id: str, params: dict):
    return "no stream"

torch.set_grad_enabled(False)
# 生命周期管理器,结束清显存
@asynccontextmanager
async def lifespan(app: FastAPI):
    yield
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
# 允许跨域
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# 对话路由
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
    global model, tokenizer

    # 检查请求
    if len(request.messages) < 1 or request.messages[-1].role == "assistant":
        raise HTTPException(status_code=400, detail="Invalid request")

    gen_params = dict(
        messages=request.messages,
        temperature=request.temperature,
        top_p=request.top_p,
        max_tokens=request.max_tokens or 1024,
        echo=False,
        stream=request.stream,
    )

    # 流式响应
    if request.stream:
        generate = predict(request.model, gen_params)
        return

    # 单次响应
    if STATE_MOD == "cog":
        response = generate_cogvlm(model, tokenizer, gen_params)
    elif STATE_MOD == "moon":
        response = generate_moondream(gen_params)
    elif STATE_MOD == "mini":
        response = generate_minicpm(model, gen_params)
    usage = UsageInfo()
    message = ChatMessageResponse(
        role="assistant",
        content=response["text"],
    )
    logger.debug(f"==== message ====\n{message}")
    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=message,
    )
    task_usage = UsageInfo.model_validate(response["usage"])
    for usage_key, usage_value in task_usage.model_dump().items():
        setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
    return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)

# 模型切换路由配置
STATE_MOD = "moon"
MODEL_PATH = ""

# 模型加载
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_mod(model_input, mod_type):
    global model, tokenizer, language_processor_version
    if mod_type == "cog":
        tokenizer_path = os.environ.get("TOKENIZER_PATH", 'lmsys/vicuna-7b-v1.5')
        tokenizer = LlamaTokenizer.from_pretrained(
            tokenizer_path,
            trust_remote_code=True,
            signal_type=language_processor_version
        )
        if 'cuda' in DEVICE:
            model = AutoModelForCausalLM.from_pretrained(
                model_input,
                trust_remote_code=True,
                load_in_4bit=True,
                torch_dtype=torch_type,
                low_cpu_mem_usage=True
            ).eval()
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_input,
                trust_remote_code=True
            ).float().to(DEVICE).eval()
    elif mod_type == "moon":
        device, dtype = detect_device()
        model = Moondream.from_pretrained(model_input).to(device=device, dtype=dtype).eval()
        tokenizer = Tokenizer.from_pretrained(model_input)
    elif mod_type == "mini":
        model, tokenizer = omnichat.OmniLMMChat(model_input), None

@app.post("/v1/Cog-vqa")
async def switch_vqa():
    global model, STATE_MOD, mod_vqa, language_processor_version
    STATE_MOD = "cog"
    del model
    model = None
    language_processor_version = "chat_old"
    load_mod(mod_vqa, STATE_MOD)

@app.post("/v1/Cog-chat")
async def switch_chat():
    global model, STATE_MOD, mod_chat, language_processor_version
    STATE_MOD = "cog"
    del model
    model = None
    language_processor_version = "chat"
    load_mod(mod_chat, STATE_MOD)

@app.post("/v1/moondream")
async def switch_moon():
    global model, STATE_MOD, mod_moon
    STATE_MOD = "moon"
    del model
    model = None
    load_mod(mod_moon, STATE_MOD)

@app.post("/v1/MiniCPM")
async def switch_mini():
    global model, STATE_MOD, mod_mini
    STATE_MOD = "mini"
    del model
    model = None
    load_mod(mod_mini, STATE_MOD)

# 关闭
@app.post("/v1/close")
async def close():
    global model
    del model
    model = None

gc.collect()

parser = argparse.ArgumentParser()
parser.add_argument("--mod", type=str, default="moondrean")
args = parser.parse_args()
mod = args.mod

mod_vqa = './models/cogagent-vqa-hf'
mod_chat = './models/cogagent-chat-hf'
mod_moon = './models/moondream'
mod_mini = './models/MiniCPM-Llama3-V-2_5'

'''
mod_list = [
    "moondrean",
    "Cog-vqa",
    "Cog-chat"
    "MiniCPM"
    ]
'''

if mod == "Cog-vqa":
    STATE_MOD = "cog"
    MODEL_PATH = mod_vqa
    language_processor_version = "chat_old"
elif mod == "Cog-chat":
    STATE_MOD = "cog"
    MODEL_PATH = mod_chat
    language_processor_version = "chat"
elif mod == "moondream":
    STATE_MOD = "moon"
    MODEL_PATH = mod_moon
elif mod == "MiniCPM":
    STATE_MOD = "mini"
    MODEL_PATH = mod_mini

if __name__ == "__main__":
    if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
        torch_type = torch.bfloat16
    else:
        torch_type = torch.float16

    print("========Use torch type as:{} with device:{}========\n\n".format(torch_type, DEVICE))

    load_mod(MODEL_PATH, STATE_MOD)

    uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)