File size: 7,684 Bytes
1a48c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import matplotlib
matplotlib.use('Agg')

import gradio as gr
import gymnasium as gym
from stable_baselines3 import SAC
from stable_baselines3.common.vec_env import VecFrameStack, DummyVecEnv
import os

from huggingface_hub import hf_hub_download

import gym_laser  # Registers env name for gym.make()

# Pre-trained model configurations (TODO: add models by hosting them on huggingface)
PRETRAINED_MODELS = {
    "Random Policy": None,
    "Upload Custom Model": "upload",
    "SAC-UDR(1.5,2.5)": "sac-udr-narrow", 
    "SAC-UDR(1.0,9.0)": "sac-udr-wide-extra",
}

MAX_STEPS = 100_000  # large number for continuous simulation

def get_model_path(model_id):
    """Get the path to a pre-trained model."""
    return f"pretrained-policies/{model_id}.zip"


def load_pretrained_model(model_id):
    """Load a pre-trained model."""
    model = hf_hub_download(
        repo_id=f"fracapuano/{model_id}", filename=f"{model_id}.zip"
    )
    return SAC.load(model)


def make_env_fn():
    """Helper function to create a single environment instance."""
    return gym.make("LaserEnv", render_mode="rgb_array")


def initialize_environment():
    """Initializes the environment on app load."""
    try:
        env = DummyVecEnv([make_env_fn])
        env = VecFrameStack(env, n_stack=5)
        obs = env.reset()
        state = { 
            "env": env, 
            "obs": obs, 
            "model": None, 
            "step_num": 0,
            "current_b_integral": 2.0,  # Store current B-integral in state
            "model_filename": "Random Policy"  # Default model name
        }
        return state
    except Exception as e:
        return None, f"Error: {e}"


def load_selected_model(state, model_selection, uploaded_file):
    """Loads a model based on selection (pre-trained or uploaded)."""
    if state is None:
        return state, gr.update()
    
    try:
        if model_selection == "Random Policy":
            state["model"] = None
            state["model_filename"] = "Random Policy"
            state["obs"] = state["env"].reset()
            state["step_num"] = 0
            return state, gr.update()
        
        elif model_selection == "Upload Custom Model":
            if uploaded_file is None:
                return state, "Please upload a model file.", gr.update()
            
            model_filename = uploaded_file.name.split('/')[-1]
            state["model"] = SAC.load(uploaded_file.name)
            state["model_filename"] = model_filename
            state["obs"] = state["env"].reset()
            state["step_num"] = 0
            return state, gr.update()
        
        else:
            model_id = PRETRAINED_MODELS[model_selection]
            model = load_pretrained_model(model_id)
            
            state["model"] = model
            state["model_filename"] = model_selection
            state["obs"] = state["env"].reset()
            state["step_num"] = 0
            return state, gr.update()
            
    except Exception as e:
        return state, f"Error loading model: {e}", gr.update()

def update_b_integral(state, b_integral):
    """Updates the B-integral value in the state without restarting simulation."""
    if state is not None:
        state["current_b_integral"] = b_integral
    return state


def run_continuous_simulation(state):
    """Runs the simulation continuously, using the current B-integral from state."""
    if not state or "env" not in state:
        yield state, None, "Environment not ready."
        return

    env = state["env"]
    obs = state["obs"]
    step_num = state.get("step_num", 0)
    
    # Run for a large number of steps to simulate "always-on"
    for i in range(MAX_STEPS):
        model = state.get("model")
        model_filename = state.get("model_filename", "Random Policy")
        current_b = state.get("current_b_integral", 2.0)
        
        # Apply the current B-integral value from state
        env.envs[0].unwrapped.laser.B = float(current_b)

        if model:
            action, _ = model.predict(obs, deterministic=True)
        else:
            action = env.action_space.sample().reshape(1, -1)
            
        obs, _, done, _ = env.step(action)
        frame = env.render()
        
        if done[0]:
            obs = env.reset()
            step_num = 0
        else:
            step_num += 1

        state["obs"] = obs
        state["step_num"] = step_num
        
        yield state, frame


with gr.Blocks(css="body {zoom: 90%}") as demo:
    gr.Markdown("# Shaping Laser Pulses with Reinforcement Learning")
    
    with gr.Tab("Demo"):
        sim_state = gr.State()

        with gr.Row():
            b_slider = gr.Slider(
                minimum=0,
                maximum=10,
                step=0.5,
                value=2.0,
                label="B-integral",
                info="Adjust nonlinearity live during simulation.",
            )

        with gr.Row():
            image_display = gr.Image(label="Environment Render", interactive=False, height=360)
        
        with gr.Row():
            with gr.Column():
                model_selector = gr.Dropdown(
                    choices=list(PRETRAINED_MODELS.keys()),
                    value="Random Policy",
                    label="Model Selection",
                    info="Choose a pre-trained model or upload your own"
                )

        with gr.Row():
            with gr.Column(scale=1):
                model_uploader = gr.UploadButton(
                    "Upload Model (.zip)",
                    file_types=['.zip'],
                    elem_id="model-upload",
                    visible=False  # Initially hidden
                )

        # Show/hide upload button based on selection
        def update_upload_visibility(selection):
            return gr.update(visible=(selection == "Upload Custom Model"))
        
        model_selector.change(
            fn=update_upload_visibility,
            inputs=[model_selector],
            outputs=[model_uploader]
        )

        # On page load, initialize and start the continuous simulation
        init_event = demo.load(
            fn=initialize_environment,
            inputs=None,
            outputs=[sim_state]
        )
        
        continuous_event = init_event.then(
            fn=run_continuous_simulation,
            inputs=[sim_state],
            outputs=[sim_state, image_display]
        )

        # When model selection changes, load the selected model
        model_change_event = model_selector.change(
            fn=load_selected_model,
            inputs=[sim_state, model_selector, model_uploader],
            outputs=[sim_state, model_uploader],
            cancels=[continuous_event]
        ).then(
            fn=run_continuous_simulation,
            inputs=[sim_state],
            outputs=[sim_state, image_display]
        )

        # When a custom model is uploaded, load it
        model_upload_event = model_uploader.upload(
            fn=load_selected_model,
            inputs=[sim_state, model_selector, model_uploader],
            outputs=[sim_state, model_uploader],
            cancels=[continuous_event]
        ).then(
            fn=run_continuous_simulation,
            inputs=[sim_state],
            outputs=[sim_state, image_display]
        )

        # When B-integral slider changes, just update the value in state (no restart needed)
        b_slider.change(
            fn=update_b_integral,
            inputs=[sim_state, b_slider],
            outputs=[sim_state]
        )
    
    with gr.Tab("About"):
        with open("copy.md", "r") as f:
            gr.Markdown(f.read())

demo.launch()