__all__ = ['learn', 'classify_image', 'categories', 'image', 'label', 'examples', 'intf'] # Cell from fastai.vision.all import * import gradio as gr # Cell #learn = load_learner('ohbugger2k.pkl') learn = load_learner('flobbit/ohbugger2k') # Cell categories = learn.dls.vocab def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float,probs))) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label(num_top_classes=5) examples = ['carolina.jpg','abb.jpg','lady.jpg','mantis.jpg','monarch.jpg','western striped cucumber.jpg','carolina2.jpg', 'large milkweed bug.jpg', 'twice-stabbed.jpg', 'viceroy.jpg', 'lubber.jpg', 'GrashopperAulocaraElliotti958.webp'] # Cell intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, title="Oh! Bugger! 2k", description="Trained on 130133 images over 2000 species using ResNet18. Provide an image or select from one below.") intf.launch()