Spaces:
Runtime error
Runtime error
add wiki model
Browse files- app.py +78 -2
- assets/autoencoder.png +0 -0
- assets/t5-vae.png +0 -0
- info.py +5 -0
app.py
CHANGED
|
@@ -3,9 +3,27 @@ import jax.numpy as jnp
|
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
|
| 5 |
from t5_vae_flax_alt.src.t5_vae import FlaxT5VaeForAutoencoding
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
st.text('''
|
| 10 |
Try interpolating between lines of Python code using this T5-VAE.
|
| 11 |
''')
|
|
@@ -79,11 +97,13 @@ def slerp(ratio, t1, t2):
|
|
| 79 |
return res
|
| 80 |
|
| 81 |
|
| 82 |
-
def decode(ratio, txt_1, txt_2):
|
| 83 |
if not txt_1 or not txt_2:
|
| 84 |
return ''
|
|
|
|
| 85 |
lt_1, lt_2 = get_latent(txt_1), get_latent(txt_2)
|
| 86 |
lt_new = slerp(ratio, lt_1, lt_2)
|
|
|
|
| 87 |
tkns = tokens_from_latent(lt_new)
|
| 88 |
return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True)
|
| 89 |
|
|
@@ -93,6 +113,62 @@ in_2 = st.text_input("Another line of Python code.", "x = a + 10 * 2")
|
|
| 93 |
r = st.slider('Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 94 |
container = st.empty()
|
| 95 |
container.write('Loading...')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
out = decode(r, in_1, in_2)
|
| 97 |
container.empty()
|
| 98 |
st.write(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from transformers import AutoTokenizer
|
| 4 |
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
|
| 5 |
from t5_vae_flax_alt.src.t5_vae import FlaxT5VaeForAutoencoding
|
| 6 |
+
import info
|
| 7 |
|
| 8 |
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title="T5-VAE",
|
| 11 |
+
page_icon="πππ",
|
| 12 |
+
layout="wide",
|
| 13 |
+
initial_sidebar_state="expanded"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
st.title('T5-VAE πππ')
|
| 18 |
+
|
| 19 |
+
st.text('''
|
| 20 |
+
This is a variational autoencoder trained on text.
|
| 21 |
+
|
| 22 |
+
It allows interpolating on text at a high level, try it out!
|
| 23 |
+
|
| 24 |
+
See how it works [here](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html).
|
| 25 |
+
''')
|
| 26 |
+
|
| 27 |
st.text('''
|
| 28 |
Try interpolating between lines of Python code using this T5-VAE.
|
| 29 |
''')
|
|
|
|
| 97 |
return res
|
| 98 |
|
| 99 |
|
| 100 |
+
def decode(cnt, ratio, txt_1, txt_2):
|
| 101 |
if not txt_1 or not txt_2:
|
| 102 |
return ''
|
| 103 |
+
cnt.write('Getting latents...')
|
| 104 |
lt_1, lt_2 = get_latent(txt_1), get_latent(txt_2)
|
| 105 |
lt_new = slerp(ratio, lt_1, lt_2)
|
| 106 |
+
cnt.write('Decoding latent...')
|
| 107 |
tkns = tokens_from_latent(lt_new)
|
| 108 |
return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True)
|
| 109 |
|
|
|
|
| 113 |
r = st.slider('Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 114 |
container = st.empty()
|
| 115 |
container.write('Loading...')
|
| 116 |
+
out = decode(container, r, in_1, in_2)
|
| 117 |
+
container.empty()
|
| 118 |
+
st.write(out)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
st.text('''
|
| 122 |
+
Try interpolating between sentences from wikipedia using this T5-VAE.
|
| 123 |
+
''')
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@st.cache(allow_output_mutation=True)
|
| 127 |
+
def get_wiki_model():
|
| 128 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
| 129 |
+
model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-wiki")
|
| 130 |
+
assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size."
|
| 131 |
+
return model, tokenizer
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
model, tokenizer = get_wiki_model()
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
in_1 = st.text_input("A sentence.", "Children are looking for the water to be clear.")
|
| 138 |
+
in_2 = st.text_input("Another sentence.", "There are two people playing soccer.")
|
| 139 |
+
r = st.slider('Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 140 |
+
container = st.empty()
|
| 141 |
+
container.write('Loading...')
|
| 142 |
out = decode(r, in_1, in_2)
|
| 143 |
container.empty()
|
| 144 |
st.write(out)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
st.text('''
|
| 148 |
+
Try arithmetic in latent space.
|
| 149 |
+
''')
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def arithmetic(cnt, txt_a, txt_b, txt_c):
|
| 153 |
+
if not txt_a or not txt_b or not txt_c:
|
| 154 |
+
return ''
|
| 155 |
+
cnt.write('getting latents...')
|
| 156 |
+
lt_a, lt_b, lt_c = get_latent(txt_a), get_latent(txt_b), get_latent(txt_c)
|
| 157 |
+
lt_d = lt_c + (lt_b - lt_a)
|
| 158 |
+
cnt.write('decoding C + (B - A)...')
|
| 159 |
+
tkns = tokens_from_latent(lt_d)
|
| 160 |
+
return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
in_a = st.text_input("A", "Children are looking for the water to be clear.")
|
| 164 |
+
in_b = st.text_input("B", "There are two people playing soccer.")
|
| 165 |
+
in_c = st.text_input("C", "Children are looking for the water to be clear.")
|
| 166 |
+
|
| 167 |
+
st.text('''
|
| 168 |
+
A is to B as C is to...
|
| 169 |
+
''')
|
| 170 |
+
container = st.empty()
|
| 171 |
+
container.write('Loading...')
|
| 172 |
+
out = arithmetic(container, in_a, in_b, in_c)
|
| 173 |
+
container.empty()
|
| 174 |
+
st.write(out)
|
assets/autoencoder.png
ADDED
|
assets/t5-vae.png
ADDED
|
info.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
BACKGROUND = """
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
"""
|