Spaces:
Runtime error
Runtime error
| import sys | |
| import gradio as gr | |
| import jax | |
| from huggingface_hub import snapshot_download | |
| from PIL import Image | |
| from transformers import AutoTokenizer | |
| import torch | |
| from torchvision.io import ImageReadMode, read_image | |
| LOCAL_PATH = snapshot_download("flax-community/medclip") | |
| sys.path.append(LOCAL_PATH) | |
| from src.modeling_medclip import FlaxMedCLIP | |
| from run_medclip import Transform | |
| def prepare_image(image_path, model): | |
| image = read_image(image_path, mode=ImageReadMode.RGB) | |
| preprocess = Transform(model.config.vision_config.image_size) | |
| preprocess = torch.jit.script(preprocess) | |
| preprocessed_image = preprocess(image) | |
| pixel_values = torch.stack([preprocessed_image]).permute(0, 2, 3, 1).numpy() | |
| return pixel_values | |
| def prepare_text(text, tokenizer): | |
| return tokenizer(text, return_tensors="np") | |
| def save_file_to_disk(uplaoded_file): | |
| temp_file = "/tmp/image.jpeg" | |
| im = Image.fromarray(uplaoded_file) | |
| im.save(temp_file) | |
| return temp_file | |
| def load_tokenizer_and_model(): | |
| # load the saved model | |
| tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased") | |
| model = FlaxMedCLIP.from_pretrained(LOCAL_PATH) | |
| return tokenizer, model | |
| def run_inference(image_path, text, model, tokenizer): | |
| pixel_values = prepare_image(image_path, model) | |
| input_text = prepare_text(text, tokenizer) | |
| model_output = model( | |
| input_text["input_ids"], | |
| pixel_values, | |
| attention_mask=input_text["attention_mask"], | |
| train=False, | |
| return_dict=True, | |
| ) | |
| logits = model_output["logits_per_image"] | |
| score = jax.nn.sigmoid(logits)[0][0] | |
| return score | |
| tokenizer, model = load_tokenizer_and_model() | |
| def score_image_caption_pair(uploaded_file, text_input): | |
| local_image_path = save_file_to_disk(uploaded_file) | |
| score = run_inference( | |
| local_image_path, text_input, model, tokenizer).tolist() | |
| return {"Score": score} | |
| image = gr.inputs.Image(shape=(299, 299)) | |
| iface = gr.Interface( | |
| fn=score_image_caption_pair, inputs=[image, "text"], outputs=["label"], allow_flagging=False, | |
| title="Your personal TA", | |
| description=""" | |
| The purpose of this demo is to help medical students measure their diagnostic capabilities in purely academic settings. | |
| Under no circumstances should it be used to make a self-diagnosis or confront a real doctor. | |
| """ | |
| ) | |
| iface.launch() |