Spaces:
Running
Running
Merge pull request #26 from tmabraham/generation-training-demo
Browse filesdemo for generation, including during training from wandb artifact
- demo/demo_notebook.ipynb +495 -0
demo/demo_notebook.ipynb
ADDED
|
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "ewer-Q-0w2xA"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Installation"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": 1,
|
| 15 |
+
"metadata": {
|
| 16 |
+
"colab": {
|
| 17 |
+
"base_uri": "https://localhost:8080/"
|
| 18 |
+
},
|
| 19 |
+
"id": "NpsF9ipLLl2s",
|
| 20 |
+
"outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32"
|
| 21 |
+
},
|
| 22 |
+
"outputs": [],
|
| 23 |
+
"source": [
|
| 24 |
+
"#!pip install git+https://github.com/huggingface/transformers/\n",
|
| 25 |
+
"#!pip install git+https://github.com/google/flax"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": 2,
|
| 31 |
+
"metadata": {
|
| 32 |
+
"id": "M1wVkrpjU6zO"
|
| 33 |
+
},
|
| 34 |
+
"outputs": [],
|
| 35 |
+
"source": [
|
| 36 |
+
"%load_ext autoreload\n",
|
| 37 |
+
"%autoreload 2"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": 3,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [
|
| 45 |
+
{
|
| 46 |
+
"name": "stdout",
|
| 47 |
+
"output_type": "stream",
|
| 48 |
+
"text": [
|
| 49 |
+
"/home/tmabraham/vqgan-jax\n"
|
| 50 |
+
]
|
| 51 |
+
}
|
| 52 |
+
],
|
| 53 |
+
"source": [
|
| 54 |
+
"%cd ../../vqgan-jax"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "markdown",
|
| 59 |
+
"metadata": {
|
| 60 |
+
"id": "t47CH1H_IOT8"
|
| 61 |
+
},
|
| 62 |
+
"source": [
|
| 63 |
+
"# Custom BART Model"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": 4,
|
| 69 |
+
"metadata": {
|
| 70 |
+
"id": "9jQnM6S2vCpn"
|
| 71 |
+
},
|
| 72 |
+
"outputs": [],
|
| 73 |
+
"source": [
|
| 74 |
+
"# TODO: set those args in a config file\n",
|
| 75 |
+
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
| 76 |
+
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
| 77 |
+
"BOS_TOKEN_ID = 16384\n",
|
| 78 |
+
"BASE_MODEL = 'facebook/bart-large'"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": 5,
|
| 84 |
+
"metadata": {
|
| 85 |
+
"id": "_eEaJVxAKpV5"
|
| 86 |
+
},
|
| 87 |
+
"outputs": [],
|
| 88 |
+
"source": [
|
| 89 |
+
"import jax\n",
|
| 90 |
+
"import flax.linen as nn\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"from transformers.models.bart.modeling_flax_bart import *\n",
|
| 93 |
+
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
| 96 |
+
" def setup(self):\n",
|
| 97 |
+
" # we keep shared to easily load pre-trained weights\n",
|
| 98 |
+
" self.shared = nn.Embed(\n",
|
| 99 |
+
" self.config.vocab_size,\n",
|
| 100 |
+
" self.config.d_model,\n",
|
| 101 |
+
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 102 |
+
" dtype=self.dtype,\n",
|
| 103 |
+
" )\n",
|
| 104 |
+
" # a separate embedding is used for the decoder\n",
|
| 105 |
+
" self.decoder_embed = nn.Embed(\n",
|
| 106 |
+
" OUTPUT_VOCAB_SIZE,\n",
|
| 107 |
+
" self.config.d_model,\n",
|
| 108 |
+
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 109 |
+
" dtype=self.dtype,\n",
|
| 110 |
+
" )\n",
|
| 111 |
+
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" # the decoder has a different config\n",
|
| 114 |
+
" decoder_config = BartConfig(self.config.to_dict())\n",
|
| 115 |
+
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
| 116 |
+
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
| 117 |
+
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
| 120 |
+
" def setup(self):\n",
|
| 121 |
+
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
| 122 |
+
" self.lm_head = nn.Dense(\n",
|
| 123 |
+
" OUTPUT_VOCAB_SIZE,\n",
|
| 124 |
+
" use_bias=False,\n",
|
| 125 |
+
" dtype=self.dtype,\n",
|
| 126 |
+
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 127 |
+
" )\n",
|
| 128 |
+
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
| 131 |
+
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
{
|
| 135 |
+
"cell_type": "code",
|
| 136 |
+
"execution_count": 6,
|
| 137 |
+
"metadata": {
|
| 138 |
+
"scrolled": true
|
| 139 |
+
},
|
| 140 |
+
"outputs": [
|
| 141 |
+
{
|
| 142 |
+
"name": "stderr",
|
| 143 |
+
"output_type": "stream",
|
| 144 |
+
"text": [
|
| 145 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mtmabraham\u001b[0m (use `wandb login --relogin` to force relogin)\n"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"data": {
|
| 150 |
+
"text/html": [
|
| 151 |
+
"\n",
|
| 152 |
+
" Tracking run with wandb version 0.10.33<br/>\n",
|
| 153 |
+
" Syncing run <strong style=\"color:#cdcd00\">serene-resonance-1</strong> to <a href=\"https://wandb.ai\" target=\"_blank\">Weights & Biases</a> <a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">(Documentation)</a>.<br/>\n",
|
| 154 |
+
" Project page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax</a><br/>\n",
|
| 155 |
+
" Run page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax/runs/1cm35ims\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax/runs/1cm35ims</a><br/>\n",
|
| 156 |
+
" Run data is saved locally in <code>/home/tmabraham/vqgan-jax/wandb/run-20210715_030616-1cm35ims</code><br/><br/>\n",
|
| 157 |
+
" "
|
| 158 |
+
],
|
| 159 |
+
"text/plain": [
|
| 160 |
+
"<IPython.core.display.HTML object>"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"output_type": "display_data"
|
| 165 |
+
},
|
| 166 |
+
{
|
| 167 |
+
"name": "stderr",
|
| 168 |
+
"output_type": "stream",
|
| 169 |
+
"text": [
|
| 170 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Downloading large artifact model-1ef8yxby:v1, 1674.97MB. 2 files... Done. 0:0:0\n"
|
| 171 |
+
]
|
| 172 |
+
}
|
| 173 |
+
],
|
| 174 |
+
"source": [
|
| 175 |
+
"import wandb\n",
|
| 176 |
+
"run = wandb.init()\n",
|
| 177 |
+
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-1ef8yxby:v1', type='bart_model')\n",
|
| 178 |
+
"artifact_dir = artifact.download()"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"cell_type": "code",
|
| 183 |
+
"execution_count": 7,
|
| 184 |
+
"metadata": {
|
| 185 |
+
"id": "_6-XKK40oEfP",
|
| 186 |
+
"scrolled": true
|
| 187 |
+
},
|
| 188 |
+
"outputs": [
|
| 189 |
+
{
|
| 190 |
+
"name": "stderr",
|
| 191 |
+
"output_type": "stream",
|
| 192 |
+
"text": [
|
| 193 |
+
"/home/tmabraham/dalle-mini/src/transformers/src/transformers/models/bart/configuration_bart.py:180: UserWarning: Please make sure the config includes `forced_bos_token_id=16384` in future versions.The config can simply be saved and uploaded again to be fixed.\n",
|
| 194 |
+
" warnings.warn(\n",
|
| 195 |
+
"INFO:absl:Starting the local TPU driver.\n",
|
| 196 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
| 197 |
+
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: TPU Interpreter Host\n"
|
| 198 |
+
]
|
| 199 |
+
}
|
| 200 |
+
],
|
| 201 |
+
"source": [
|
| 202 |
+
"# create our model and initialize it randomly\n",
|
| 203 |
+
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "code",
|
| 208 |
+
"execution_count": 8,
|
| 209 |
+
"metadata": {
|
| 210 |
+
"colab": {
|
| 211 |
+
"base_uri": "https://localhost:8080/"
|
| 212 |
+
},
|
| 213 |
+
"id": "Jz032w73nHEf",
|
| 214 |
+
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
| 215 |
+
},
|
| 216 |
+
"outputs": [
|
| 217 |
+
{
|
| 218 |
+
"data": {
|
| 219 |
+
"text/plain": [
|
| 220 |
+
"(1, 16385)"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
"execution_count": 8,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"output_type": "execute_result"
|
| 226 |
+
}
|
| 227 |
+
],
|
| 228 |
+
"source": [
|
| 229 |
+
"# we verify that the shape has not been modified\n",
|
| 230 |
+
"model.params['final_logits_bias'].shape"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "markdown",
|
| 235 |
+
"metadata": {
|
| 236 |
+
"id": "zLl24Ez5t7x1"
|
| 237 |
+
},
|
| 238 |
+
"source": [
|
| 239 |
+
"## Inference"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": 9,
|
| 245 |
+
"metadata": {
|
| 246 |
+
"id": "XLLA2NK3uDQr"
|
| 247 |
+
},
|
| 248 |
+
"outputs": [],
|
| 249 |
+
"source": [
|
| 250 |
+
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": 10,
|
| 256 |
+
"metadata": {
|
| 257 |
+
"id": "P32mJJSbrU1F"
|
| 258 |
+
},
|
| 259 |
+
"outputs": [],
|
| 260 |
+
"source": [
|
| 261 |
+
"input_ids_test = tokenizer.encode('I enjoy walking with my cute dog', return_tensors='jax')"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "code",
|
| 266 |
+
"execution_count": 11,
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"outputs": [
|
| 269 |
+
{
|
| 270 |
+
"data": {
|
| 271 |
+
"text/plain": [
|
| 272 |
+
"DeviceArray([[ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n",
|
| 273 |
+
" 2]], dtype=int32)"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
"execution_count": 11,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"output_type": "execute_result"
|
| 279 |
+
}
|
| 280 |
+
],
|
| 281 |
+
"source": [
|
| 282 |
+
"input_ids_test"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "code",
|
| 287 |
+
"execution_count": 12,
|
| 288 |
+
"metadata": {
|
| 289 |
+
"id": "C7cHbIHruELT"
|
| 290 |
+
},
|
| 291 |
+
"outputs": [],
|
| 292 |
+
"source": [
|
| 293 |
+
"greedy_output = model.generate(input_ids_test, max_length=257)"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": 13,
|
| 299 |
+
"metadata": {
|
| 300 |
+
"colab": {
|
| 301 |
+
"base_uri": "https://localhost:8080/"
|
| 302 |
+
},
|
| 303 |
+
"id": "jYugh9cOuwc9",
|
| 304 |
+
"outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537"
|
| 305 |
+
},
|
| 306 |
+
"outputs": [
|
| 307 |
+
{
|
| 308 |
+
"data": {
|
| 309 |
+
"text/plain": [
|
| 310 |
+
"DeviceArray([[16384, 16384, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 311 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 312 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 313 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 314 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 315 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 316 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 317 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 318 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 319 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 320 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 321 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 322 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 323 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 324 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 325 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 326 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 327 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 328 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 329 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 330 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 331 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 332 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 333 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 334 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 335 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 336 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 337 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 338 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 339 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 340 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 341 |
+
" 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n",
|
| 342 |
+
" 10042]], dtype=int32)"
|
| 343 |
+
]
|
| 344 |
+
},
|
| 345 |
+
"execution_count": 13,
|
| 346 |
+
"metadata": {},
|
| 347 |
+
"output_type": "execute_result"
|
| 348 |
+
}
|
| 349 |
+
],
|
| 350 |
+
"source": [
|
| 351 |
+
"greedy_output[0]"
|
| 352 |
+
]
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"cell_type": "markdown",
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"source": [
|
| 358 |
+
"# VGAN Jax"
|
| 359 |
+
]
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"cell_type": "code",
|
| 363 |
+
"execution_count": 14,
|
| 364 |
+
"metadata": {},
|
| 365 |
+
"outputs": [],
|
| 366 |
+
"source": [
|
| 367 |
+
"import io\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"import requests\n",
|
| 370 |
+
"from PIL import Image\n",
|
| 371 |
+
"import numpy as np\n",
|
| 372 |
+
"\n",
|
| 373 |
+
"import torch\n",
|
| 374 |
+
"import torchvision.transforms as T\n",
|
| 375 |
+
"import torchvision.transforms.functional as TF\n",
|
| 376 |
+
"from torchvision.transforms import InterpolationMode"
|
| 377 |
+
]
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"cell_type": "code",
|
| 381 |
+
"execution_count": 15,
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"outputs": [],
|
| 384 |
+
"source": [
|
| 385 |
+
"from modeling_flax_vqgan import VQModel"
|
| 386 |
+
]
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"cell_type": "code",
|
| 390 |
+
"execution_count": 16,
|
| 391 |
+
"metadata": {},
|
| 392 |
+
"outputs": [],
|
| 393 |
+
"source": [
|
| 394 |
+
"def custom_to_pil(x):\n",
|
| 395 |
+
" x = np.clip(x, 0., 1.)\n",
|
| 396 |
+
" x = (255*x).astype(np.uint8)\n",
|
| 397 |
+
" x = Image.fromarray(x)\n",
|
| 398 |
+
" if not x.mode == \"RGB\":\n",
|
| 399 |
+
" x = x.convert(\"RGB\")\n",
|
| 400 |
+
" return x"
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"cell_type": "code",
|
| 405 |
+
"execution_count": 17,
|
| 406 |
+
"metadata": {
|
| 407 |
+
"colab": {
|
| 408 |
+
"base_uri": "https://localhost:8080/"
|
| 409 |
+
},
|
| 410 |
+
"id": "Jz032w73nHEf",
|
| 411 |
+
"outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49"
|
| 412 |
+
},
|
| 413 |
+
"outputs": [
|
| 414 |
+
{
|
| 415 |
+
"name": "stdout",
|
| 416 |
+
"output_type": "stream",
|
| 417 |
+
"text": [
|
| 418 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
| 419 |
+
]
|
| 420 |
+
}
|
| 421 |
+
],
|
| 422 |
+
"source": [
|
| 423 |
+
"model = VQModel.from_pretrained(\"valhalla/vqgan-imagenet-f16-1024\")"
|
| 424 |
+
]
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"cell_type": "code",
|
| 428 |
+
"execution_count": 18,
|
| 429 |
+
"metadata": {},
|
| 430 |
+
"outputs": [],
|
| 431 |
+
"source": [
|
| 432 |
+
"def get_images(indices, model):\n",
|
| 433 |
+
" indices = indices[:, 1:]\n",
|
| 434 |
+
" model.decode_code(indices)\n",
|
| 435 |
+
" return indices"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"cell_type": "code",
|
| 440 |
+
"execution_count": 19,
|
| 441 |
+
"metadata": {},
|
| 442 |
+
"outputs": [
|
| 443 |
+
{
|
| 444 |
+
"name": "stdout",
|
| 445 |
+
"output_type": "stream",
|
| 446 |
+
"text": [
|
| 447 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
| 448 |
+
]
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"data": {
|
| 452 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAEACAIAAAD9XIvPAAAAF0lEQVR4nGP4//8/EwMDwygexaN45GEA7ucE/J1FRrMAAAAASUVORK5CYII=\n",
|
| 453 |
+
"text/plain": [
|
| 454 |
+
"<PIL.Image.Image image mode=RGB size=1x256 at 0x7FE6389B6280>"
|
| 455 |
+
]
|
| 456 |
+
},
|
| 457 |
+
"execution_count": 19,
|
| 458 |
+
"metadata": {},
|
| 459 |
+
"output_type": "execute_result"
|
| 460 |
+
}
|
| 461 |
+
],
|
| 462 |
+
"source": [
|
| 463 |
+
"custom_to_pil(np.asarray(get_images(greedy_output[0], model)[0]))"
|
| 464 |
+
]
|
| 465 |
+
}
|
| 466 |
+
],
|
| 467 |
+
"metadata": {
|
| 468 |
+
"accelerator": "TPU",
|
| 469 |
+
"colab": {
|
| 470 |
+
"collapsed_sections": [],
|
| 471 |
+
"machine_shape": "hm",
|
| 472 |
+
"name": "CustomBARTv4b-model-generate.ipynb",
|
| 473 |
+
"provenance": []
|
| 474 |
+
},
|
| 475 |
+
"kernelspec": {
|
| 476 |
+
"display_name": "Python 3",
|
| 477 |
+
"language": "python",
|
| 478 |
+
"name": "python3"
|
| 479 |
+
},
|
| 480 |
+
"language_info": {
|
| 481 |
+
"codemirror_mode": {
|
| 482 |
+
"name": "ipython",
|
| 483 |
+
"version": 3
|
| 484 |
+
},
|
| 485 |
+
"file_extension": ".py",
|
| 486 |
+
"mimetype": "text/x-python",
|
| 487 |
+
"name": "python",
|
| 488 |
+
"nbconvert_exporter": "python",
|
| 489 |
+
"pygments_lexer": "ipython3",
|
| 490 |
+
"version": "3.8.8"
|
| 491 |
+
}
|
| 492 |
+
},
|
| 493 |
+
"nbformat": 4,
|
| 494 |
+
"nbformat_minor": 1
|
| 495 |
+
}
|