Spaces:
Running
Running
fix: define function before it is used
Browse files- seq2seq/run_seq2seq_flax.py +32 -31
seq2seq/run_seq2seq_flax.py
CHANGED
|
@@ -779,6 +779,38 @@ def main():
|
|
| 779 |
|
| 780 |
return eval_metrics
|
| 781 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 782 |
for epoch in epochs:
|
| 783 |
# ======================== Training ================================
|
| 784 |
train_start = time.time()
|
|
@@ -820,37 +852,6 @@ def main():
|
|
| 820 |
# save checkpoint after each epoch and push checkpoint to the hub
|
| 821 |
run_save_model(global_step, epoch, eval_metrics)
|
| 822 |
|
| 823 |
-
def run_save_model(step, epoch, eval_metrics=None):
|
| 824 |
-
if jax.process_index() == 0:
|
| 825 |
-
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 826 |
-
|
| 827 |
-
# save model locally
|
| 828 |
-
model.save_pretrained(
|
| 829 |
-
training_args.output_dir,
|
| 830 |
-
params=params,
|
| 831 |
-
)
|
| 832 |
-
|
| 833 |
-
# save to W&B
|
| 834 |
-
if data_args.log_model:
|
| 835 |
-
metadata = {'epoch': epoch+1, 'eval/loss': eval_metrics['loss']}
|
| 836 |
-
if eval_metrics is not None:
|
| 837 |
-
metadata['eval/loss'] = eval_metrics['loss']
|
| 838 |
-
artifact = wandb.Artifact(
|
| 839 |
-
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
|
| 840 |
-
)
|
| 841 |
-
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack'))
|
| 842 |
-
artifact.add_file(str(Path(training_args.output_dir) / 'config.json'))
|
| 843 |
-
wandb.run.log_artifact(artifact)
|
| 844 |
-
|
| 845 |
-
# save to the hub
|
| 846 |
-
if training_args.push_to_hub:
|
| 847 |
-
model.save_pretrained(
|
| 848 |
-
training_args.output_dir,
|
| 849 |
-
params=params,
|
| 850 |
-
push_to_hub=training_args.push_to_hub,
|
| 851 |
-
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
| 852 |
-
temp_dir=True # avoid issues with being in a repository
|
| 853 |
-
)
|
| 854 |
|
| 855 |
# ======================== Prediction loop ==============================
|
| 856 |
if training_args.do_predict:
|
|
|
|
| 779 |
|
| 780 |
return eval_metrics
|
| 781 |
|
| 782 |
+
def run_save_model(step, epoch, eval_metrics=None):
|
| 783 |
+
if jax.process_index() == 0:
|
| 784 |
+
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
|
| 785 |
+
|
| 786 |
+
# save model locally
|
| 787 |
+
model.save_pretrained(
|
| 788 |
+
training_args.output_dir,
|
| 789 |
+
params=params,
|
| 790 |
+
)
|
| 791 |
+
|
| 792 |
+
# save to W&B
|
| 793 |
+
if data_args.log_model:
|
| 794 |
+
metadata = {'epoch': epoch+1, 'eval/loss': eval_metrics['loss']}
|
| 795 |
+
if eval_metrics is not None:
|
| 796 |
+
metadata['eval/loss'] = eval_metrics['loss']
|
| 797 |
+
artifact = wandb.Artifact(
|
| 798 |
+
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
|
| 799 |
+
)
|
| 800 |
+
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack'))
|
| 801 |
+
artifact.add_file(str(Path(training_args.output_dir) / 'config.json'))
|
| 802 |
+
wandb.run.log_artifact(artifact)
|
| 803 |
+
|
| 804 |
+
# save to the hub
|
| 805 |
+
if training_args.push_to_hub:
|
| 806 |
+
model.save_pretrained(
|
| 807 |
+
training_args.output_dir,
|
| 808 |
+
params=params,
|
| 809 |
+
push_to_hub=training_args.push_to_hub,
|
| 810 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
| 811 |
+
temp_dir=True # avoid issues with being in a repository
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
for epoch in epochs:
|
| 815 |
# ======================== Training ================================
|
| 816 |
train_start = time.time()
|
|
|
|
| 852 |
# save checkpoint after each epoch and push checkpoint to the hub
|
| 853 |
run_save_model(global_step, epoch, eval_metrics)
|
| 854 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 855 |
|
| 856 |
# ======================== Prediction loop ==============================
|
| 857 |
if training_args.do_predict:
|