Spaces:
Running
Running
fix: typo
Browse files
dev/inference/wandb-backend.ipynb
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"id": "4ff2a984-b8b2-4a69-89cf-0d16da2393c8",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
@@ -12,7 +12,7 @@
|
|
| 12 |
"import random\n",
|
| 13 |
"import numpy as np\n",
|
| 14 |
"from PIL import Image\n",
|
| 15 |
-
"from tqdm import tqdm\n",
|
| 16 |
"import jax\n",
|
| 17 |
"import jax.numpy as jnp\n",
|
| 18 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
|
@@ -26,7 +26,7 @@
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
-
"execution_count":
|
| 30 |
"id": "92f4557c-fd7f-4edc-81c2-de0b0a10c270",
|
| 31 |
"metadata": {},
|
| 32 |
"outputs": [],
|
|
@@ -36,13 +36,13 @@
|
|
| 36 |
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
|
| 37 |
"normalize_text = True\n",
|
| 38 |
"latest_only = False # log only latest or all versions\n",
|
| 39 |
-
"suffix = '
|
| 40 |
"add_clip_32 = False"
|
| 41 |
]
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
-
"execution_count":
|
| 46 |
"id": "23e00271-941c-4e1b-b6a9-107a1b77324d",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
@@ -52,16 +52,25 @@
|
|
| 52 |
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
|
| 53 |
"normalize_text = False\n",
|
| 54 |
"latest_only = True # log only latest or all versions\n",
|
| 55 |
-
"suffix = '
|
| 56 |
"add_clip_32 = True"
|
| 57 |
]
|
| 58 |
},
|
| 59 |
{
|
| 60 |
"cell_type": "code",
|
| 61 |
-
"execution_count":
|
| 62 |
"id": "93b2e24b-f0e5-4abe-a3ec-0aa834cc3bf3",
|
| 63 |
"metadata": {},
|
| 64 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
"source": [
|
| 66 |
"batch_size = 8\n",
|
| 67 |
"num_images = 128\n",
|
|
@@ -75,10 +84,18 @@
|
|
| 75 |
},
|
| 76 |
{
|
| 77 |
"cell_type": "code",
|
| 78 |
-
"execution_count":
|
| 79 |
"id": "c6a878fa-4bf5-4978-abb5-e235841d765b",
|
| 80 |
"metadata": {},
|
| 81 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
"source": [
|
| 83 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
| 84 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
|
@@ -94,7 +111,7 @@
|
|
| 94 |
},
|
| 95 |
{
|
| 96 |
"cell_type": "code",
|
| 97 |
-
"execution_count":
|
| 98 |
"id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
|
| 99 |
"metadata": {},
|
| 100 |
"outputs": [],
|
|
@@ -104,20 +121,42 @@
|
|
| 104 |
" return vqgan.decode_code(indices, params=params)\n",
|
| 105 |
"\n",
|
| 106 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 107 |
-
"def p_clip(inputs):\n",
|
| 108 |
-
" logits = clip(params=
|
| 109 |
" return logits\n",
|
| 110 |
"\n",
|
| 111 |
"if add_clip_32:\n",
|
| 112 |
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 113 |
-
" def p_clip32(inputs):\n",
|
| 114 |
-
" logits = clip32(params=
|
| 115 |
" return logits"
|
| 116 |
]
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"cell_type": "code",
|
| 120 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
"id": "e57797ab-0b3a-4490-be58-03d8d1c23fe9",
|
| 122 |
"metadata": {},
|
| 123 |
"outputs": [],
|
|
@@ -133,7 +172,7 @@
|
|
| 133 |
},
|
| 134 |
{
|
| 135 |
"cell_type": "code",
|
| 136 |
-
"execution_count":
|
| 137 |
"id": "f3e02d9d-4ee1-49e7-a7bc-4d8b139e9614",
|
| 138 |
"metadata": {},
|
| 139 |
"outputs": [],
|
|
@@ -150,7 +189,7 @@
|
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"cell_type": "code",
|
| 153 |
-
"execution_count":
|
| 154 |
"id": "f0d7ed17-7abb-4a31-ab3c-a12b9039a570",
|
| 155 |
"metadata": {},
|
| 156 |
"outputs": [],
|
|
@@ -163,7 +202,7 @@
|
|
| 163 |
},
|
| 164 |
{
|
| 165 |
"cell_type": "code",
|
| 166 |
-
"execution_count":
|
| 167 |
"id": "7e784a43-626d-4e8d-9e47-a23775b2f35f",
|
| 168 |
"metadata": {},
|
| 169 |
"outputs": [],
|
|
@@ -179,7 +218,7 @@
|
|
| 179 |
},
|
| 180 |
{
|
| 181 |
"cell_type": "code",
|
| 182 |
-
"execution_count":
|
| 183 |
"id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
|
| 184 |
"metadata": {},
|
| 185 |
"outputs": [],
|
|
@@ -202,7 +241,7 @@
|
|
| 202 |
},
|
| 203 |
{
|
| 204 |
"cell_type": "code",
|
| 205 |
-
"execution_count":
|
| 206 |
"id": "23b2444c-67a9-44d7-abd1-187ed83a9431",
|
| 207 |
"metadata": {},
|
| 208 |
"outputs": [],
|
|
@@ -213,10 +252,19 @@
|
|
| 213 |
},
|
| 214 |
{
|
| 215 |
"cell_type": "code",
|
| 216 |
-
"execution_count":
|
| 217 |
"id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
|
| 218 |
"metadata": {},
|
| 219 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
"source": [
|
| 221 |
"artifact_versions = get_artifact_versions(run_id, latest_only)\n",
|
| 222 |
"last_inference_version = get_last_inference_version(run_id)\n",
|
|
@@ -276,9 +324,8 @@
|
|
| 276 |
" tokenized_prompt = shard(tokenized_prompt)\n",
|
| 277 |
"\n",
|
| 278 |
" # generate images\n",
|
| 279 |
-
" print('Generating images')\n",
|
| 280 |
" images = []\n",
|
| 281 |
-
" for i in tqdm(range(num_images // jax.device_count())):\n",
|
| 282 |
" key, subkey = jax.random.split(key)\n",
|
| 283 |
" encoded_images = p_generate(tokenized_prompt, shard_prng_key(subkey), model_params)\n",
|
| 284 |
" encoded_images = encoded_images.sequences[..., 1:]\n",
|
|
@@ -294,7 +341,7 @@
|
|
| 294 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
| 295 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
| 296 |
" clip_inputs = shard(clip_inputs)\n",
|
| 297 |
-
" logits = p_clip(clip_inputs)\n",
|
| 298 |
" logits = logits.reshape(-1, num_images)\n",
|
| 299 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
| 300 |
" logits = jax.device_get(logits)\n",
|
|
@@ -314,7 +361,7 @@
|
|
| 314 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
| 315 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
| 316 |
" clip_inputs = shard(clip_inputs)\n",
|
| 317 |
-
" logits = p_clip32(clip_inputs)\n",
|
| 318 |
" logits = logits.reshape(-1, num_images)\n",
|
| 319 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
| 320 |
" logits = jax.device_get(logits)\n",
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
"id": "4ff2a984-b8b2-4a69-89cf-0d16da2393c8",
|
| 7 |
"metadata": {},
|
| 8 |
"outputs": [],
|
|
|
|
| 12 |
"import random\n",
|
| 13 |
"import numpy as np\n",
|
| 14 |
"from PIL import Image\n",
|
| 15 |
+
"from tqdm.notebook import tqdm\n",
|
| 16 |
"import jax\n",
|
| 17 |
"import jax.numpy as jnp\n",
|
| 18 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
|
|
|
| 26 |
},
|
| 27 |
{
|
| 28 |
"cell_type": "code",
|
| 29 |
+
"execution_count": 2,
|
| 30 |
"id": "92f4557c-fd7f-4edc-81c2-de0b0a10c270",
|
| 31 |
"metadata": {},
|
| 32 |
"outputs": [],
|
|
|
|
| 36 |
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
|
| 37 |
"normalize_text = True\n",
|
| 38 |
"latest_only = False # log only latest or all versions\n",
|
| 39 |
+
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
|
| 40 |
"add_clip_32 = False"
|
| 41 |
]
|
| 42 |
},
|
| 43 |
{
|
| 44 |
"cell_type": "code",
|
| 45 |
+
"execution_count": 3,
|
| 46 |
"id": "23e00271-941c-4e1b-b6a9-107a1b77324d",
|
| 47 |
"metadata": {},
|
| 48 |
"outputs": [],
|
|
|
|
| 52 |
"VQGAN_REPO, VQGAN_COMMIT_ID = 'dalle-mini/vqgan_imagenet_f16_16384', None\n",
|
| 53 |
"normalize_text = False\n",
|
| 54 |
"latest_only = True # log only latest or all versions\n",
|
| 55 |
+
"suffix = '' # mainly for duplicate inference runs with a deleted version\n",
|
| 56 |
"add_clip_32 = True"
|
| 57 |
]
|
| 58 |
},
|
| 59 |
{
|
| 60 |
"cell_type": "code",
|
| 61 |
+
"execution_count": 4,
|
| 62 |
"id": "93b2e24b-f0e5-4abe-a3ec-0aa834cc3bf3",
|
| 63 |
"metadata": {},
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"name": "stderr",
|
| 67 |
+
"output_type": "stream",
|
| 68 |
+
"text": [
|
| 69 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': NOT_FOUND: Unable to find driver in registry given worker: \n",
|
| 70 |
+
"INFO:absl:Unable to initialize backend 'gpu': NOT_FOUND: Could not find registered platform with name: \"cuda\". Available platform names are: TPU Interpreter Host\n"
|
| 71 |
+
]
|
| 72 |
+
}
|
| 73 |
+
],
|
| 74 |
"source": [
|
| 75 |
"batch_size = 8\n",
|
| 76 |
"num_images = 128\n",
|
|
|
|
| 84 |
},
|
| 85 |
{
|
| 86 |
"cell_type": "code",
|
| 87 |
+
"execution_count": 5,
|
| 88 |
"id": "c6a878fa-4bf5-4978-abb5-e235841d765b",
|
| 89 |
"metadata": {},
|
| 90 |
+
"outputs": [
|
| 91 |
+
{
|
| 92 |
+
"name": "stdout",
|
| 93 |
+
"output_type": "stream",
|
| 94 |
+
"text": [
|
| 95 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
| 96 |
+
]
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
"source": [
|
| 100 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
| 101 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
|
|
|
|
| 111 |
},
|
| 112 |
{
|
| 113 |
"cell_type": "code",
|
| 114 |
+
"execution_count": 6,
|
| 115 |
"id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
|
| 116 |
"metadata": {},
|
| 117 |
"outputs": [],
|
|
|
|
| 121 |
" return vqgan.decode_code(indices, params=params)\n",
|
| 122 |
"\n",
|
| 123 |
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 124 |
+
"def p_clip(inputs, params):\n",
|
| 125 |
+
" logits = clip(params=params, **inputs).logits_per_image\n",
|
| 126 |
" return logits\n",
|
| 127 |
"\n",
|
| 128 |
"if add_clip_32:\n",
|
| 129 |
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 130 |
+
" def p_clip32(inputs, params):\n",
|
| 131 |
+
" logits = clip32(params=params, **inputs).logits_per_image\n",
|
| 132 |
" return logits"
|
| 133 |
]
|
| 134 |
},
|
| 135 |
{
|
| 136 |
"cell_type": "code",
|
| 137 |
+
"execution_count": 7,
|
| 138 |
+
"id": "ebf4f7bf-2efa-46cc-b3f4-2d7a54f7b2cb",
|
| 139 |
+
"metadata": {},
|
| 140 |
+
"outputs": [
|
| 141 |
+
{
|
| 142 |
+
"data": {
|
| 143 |
+
"text/plain": [
|
| 144 |
+
"ShardedDeviceArray([4.6051702, 4.6051702, 4.6051702, 4.6051702, 4.6051702,\n",
|
| 145 |
+
" 4.6051702, 4.6051702, 4.6051702], dtype=float32)"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
"execution_count": 7,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"output_type": "execute_result"
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"source": [
|
| 154 |
+
"clip_params['logit_scale']"
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": 8,
|
| 160 |
"id": "e57797ab-0b3a-4490-be58-03d8d1c23fe9",
|
| 161 |
"metadata": {},
|
| 162 |
"outputs": [],
|
|
|
|
| 172 |
},
|
| 173 |
{
|
| 174 |
"cell_type": "code",
|
| 175 |
+
"execution_count": 9,
|
| 176 |
"id": "f3e02d9d-4ee1-49e7-a7bc-4d8b139e9614",
|
| 177 |
"metadata": {},
|
| 178 |
"outputs": [],
|
|
|
|
| 189 |
},
|
| 190 |
{
|
| 191 |
"cell_type": "code",
|
| 192 |
+
"execution_count": 10,
|
| 193 |
"id": "f0d7ed17-7abb-4a31-ab3c-a12b9039a570",
|
| 194 |
"metadata": {},
|
| 195 |
"outputs": [],
|
|
|
|
| 202 |
},
|
| 203 |
{
|
| 204 |
"cell_type": "code",
|
| 205 |
+
"execution_count": 11,
|
| 206 |
"id": "7e784a43-626d-4e8d-9e47-a23775b2f35f",
|
| 207 |
"metadata": {},
|
| 208 |
"outputs": [],
|
|
|
|
| 218 |
},
|
| 219 |
{
|
| 220 |
"cell_type": "code",
|
| 221 |
+
"execution_count": 12,
|
| 222 |
"id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
|
| 223 |
"metadata": {},
|
| 224 |
"outputs": [],
|
|
|
|
| 241 |
},
|
| 242 |
{
|
| 243 |
"cell_type": "code",
|
| 244 |
+
"execution_count": 13,
|
| 245 |
"id": "23b2444c-67a9-44d7-abd1-187ed83a9431",
|
| 246 |
"metadata": {},
|
| 247 |
"outputs": [],
|
|
|
|
| 252 |
},
|
| 253 |
{
|
| 254 |
"cell_type": "code",
|
| 255 |
+
"execution_count": 14,
|
| 256 |
"id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
|
| 257 |
"metadata": {},
|
| 258 |
+
"outputs": [
|
| 259 |
+
{
|
| 260 |
+
"ename": "SyntaxError",
|
| 261 |
+
"evalue": "EOL while scanning string literal (1745443972.py, line 60)",
|
| 262 |
+
"output_type": "error",
|
| 263 |
+
"traceback": [
|
| 264 |
+
"\u001b[0;36m File \u001b[0;32m\"/tmp/ipykernel_402605/1745443972.py\"\u001b[0;36m, line \u001b[0;32m60\u001b[0m\n\u001b[0;31m for i in tqdm(range(num_images // jax.device_count()), desc='Generating Images):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m EOL while scanning string literal\n"
|
| 265 |
+
]
|
| 266 |
+
}
|
| 267 |
+
],
|
| 268 |
"source": [
|
| 269 |
"artifact_versions = get_artifact_versions(run_id, latest_only)\n",
|
| 270 |
"last_inference_version = get_last_inference_version(run_id)\n",
|
|
|
|
| 324 |
" tokenized_prompt = shard(tokenized_prompt)\n",
|
| 325 |
"\n",
|
| 326 |
" # generate images\n",
|
|
|
|
| 327 |
" images = []\n",
|
| 328 |
+
" for i in tqdm(range(num_images // jax.device_count()), desc='Generating Images):\n",
|
| 329 |
" key, subkey = jax.random.split(key)\n",
|
| 330 |
" encoded_images = p_generate(tokenized_prompt, shard_prng_key(subkey), model_params)\n",
|
| 331 |
" encoded_images = encoded_images.sequences[..., 1:]\n",
|
|
|
|
| 341 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
| 342 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
| 343 |
" clip_inputs = shard(clip_inputs)\n",
|
| 344 |
+
" logits = p_clip(clip_inputs, clip_params)\n",
|
| 345 |
" logits = logits.reshape(-1, num_images)\n",
|
| 346 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
| 347 |
" logits = jax.device_get(logits)\n",
|
|
|
|
| 361 |
" images_per_prompt_indices = np.asarray(range(0, len(images), batch_size))\n",
|
| 362 |
" clip_inputs['pixel_values'] = jnp.concatenate(list(clip_inputs['pixel_values'][images_per_prompt_indices + i] for i in range(batch_size)))\n",
|
| 363 |
" clip_inputs = shard(clip_inputs)\n",
|
| 364 |
+
" logits = p_clip32(clip_inputs, clip32_params)\n",
|
| 365 |
" logits = logits.reshape(-1, num_images)\n",
|
| 366 |
" top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
|
| 367 |
" logits = jax.device_get(logits)\n",
|