Spaces:
Running
Running
refactor: loop over runs
Browse files- dev/inference/wandb-backend.ipynb +98 -229
dev/inference/wandb-backend.ipynb
CHANGED
|
@@ -13,6 +13,7 @@
|
|
| 13 |
"import random\n",
|
| 14 |
"import numpy as np\n",
|
| 15 |
"from PIL import Image\n",
|
|
|
|
| 16 |
"import jax\n",
|
| 17 |
"import jax.numpy as jnp\n",
|
| 18 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
|
@@ -47,18 +48,10 @@
|
|
| 47 |
"num_images = 128\n",
|
| 48 |
"top_k = 8\n",
|
| 49 |
"text_normalizer = TextNormalizer() if normalize_text else None\n",
|
| 50 |
-
"padding_item = 'NONE'"
|
| 51 |
-
]
|
| 52 |
-
},
|
| 53 |
-
{
|
| 54 |
-
"cell_type": "code",
|
| 55 |
-
"execution_count": null,
|
| 56 |
-
"id": "6a045827-3461-4499-8959-38d173bc4e5e",
|
| 57 |
-
"metadata": {},
|
| 58 |
-
"outputs": [],
|
| 59 |
-
"source": [
|
| 60 |
"seed = random.randint(0, 2**32-1)\n",
|
| 61 |
-
"key = jax.random.PRNGKey(seed)"
|
|
|
|
| 62 |
]
|
| 63 |
},
|
| 64 |
{
|
|
@@ -70,18 +63,26 @@
|
|
| 70 |
"source": [
|
| 71 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
| 72 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
| 73 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
|
|
|
|
|
|
| 74 |
]
|
| 75 |
},
|
| 76 |
{
|
| 77 |
"cell_type": "code",
|
| 78 |
"execution_count": null,
|
| 79 |
-
"id": "
|
| 80 |
"metadata": {},
|
| 81 |
"outputs": [],
|
| 82 |
"source": [
|
| 83 |
-
"
|
| 84 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
]
|
| 86 |
},
|
| 87 |
{
|
|
@@ -103,36 +104,6 @@
|
|
| 103 |
" samples = [samples[i:i+batch_size] for i in range(0, len(samples), batch_size)]"
|
| 104 |
]
|
| 105 |
},
|
| 106 |
-
{
|
| 107 |
-
"cell_type": "code",
|
| 108 |
-
"execution_count": null,
|
| 109 |
-
"id": "f75b2869-fc25-4f56-b937-e97bbb712ede",
|
| 110 |
-
"metadata": {},
|
| 111 |
-
"outputs": [],
|
| 112 |
-
"source": [
|
| 113 |
-
"len(samples)"
|
| 114 |
-
]
|
| 115 |
-
},
|
| 116 |
-
{
|
| 117 |
-
"cell_type": "code",
|
| 118 |
-
"execution_count": null,
|
| 119 |
-
"id": "c48525c9-447a-4430-81d7-4b699f545638",
|
| 120 |
-
"metadata": {},
|
| 121 |
-
"outputs": [],
|
| 122 |
-
"source": [
|
| 123 |
-
"samples[-1]"
|
| 124 |
-
]
|
| 125 |
-
},
|
| 126 |
-
{
|
| 127 |
-
"cell_type": "code",
|
| 128 |
-
"execution_count": null,
|
| 129 |
-
"id": "a2c629e9-1a82-40c6-a260-ca1780c19a2e",
|
| 130 |
-
"metadata": {},
|
| 131 |
-
"outputs": [],
|
| 132 |
-
"source": [
|
| 133 |
-
"api = wandb.Api()"
|
| 134 |
-
]
|
| 135 |
-
},
|
| 136 |
{
|
| 137 |
"cell_type": "code",
|
| 138 |
"execution_count": null,
|
|
@@ -142,7 +113,7 @@
|
|
| 142 |
"source": [
|
| 143 |
"# TODO: iterate on runs\n",
|
| 144 |
"wandb_run = wandb_runs[0]\n",
|
| 145 |
-
"
|
| 146 |
]
|
| 147 |
},
|
| 148 |
{
|
|
@@ -152,60 +123,12 @@
|
|
| 152 |
"metadata": {},
|
| 153 |
"outputs": [],
|
| 154 |
"source": [
|
| 155 |
-
"
|
| 156 |
-
"
|
| 157 |
-
"
|
| 158 |
-
"
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
{
|
| 162 |
-
"cell_type": "code",
|
| 163 |
-
"execution_count": null,
|
| 164 |
-
"id": "e8026e63-9e73-472c-9440-5e742c614901",
|
| 165 |
-
"metadata": {},
|
| 166 |
-
"outputs": [],
|
| 167 |
-
"source": [
|
| 168 |
-
"versions, len(versions)"
|
| 169 |
-
]
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"cell_type": "code",
|
| 173 |
-
"execution_count": null,
|
| 174 |
-
"id": "ead44aee-52d5-4ca2-8984-c4d267d9e72a",
|
| 175 |
-
"metadata": {},
|
| 176 |
-
"outputs": [],
|
| 177 |
-
"source": [
|
| 178 |
-
"versions[0].version"
|
| 179 |
-
]
|
| 180 |
-
},
|
| 181 |
-
{
|
| 182 |
-
"cell_type": "code",
|
| 183 |
-
"execution_count": null,
|
| 184 |
-
"id": "cfd48de9-6022-444f-8b12-05cba8fad071",
|
| 185 |
-
"metadata": {},
|
| 186 |
-
"outputs": [],
|
| 187 |
-
"source": [
|
| 188 |
-
"artifact = versions[0]"
|
| 189 |
-
]
|
| 190 |
-
},
|
| 191 |
-
{
|
| 192 |
-
"cell_type": "code",
|
| 193 |
-
"execution_count": null,
|
| 194 |
-
"id": "4db848c1-2bb5-432c-a732-1c6d0636e172",
|
| 195 |
-
"metadata": {},
|
| 196 |
-
"outputs": [],
|
| 197 |
-
"source": [
|
| 198 |
-
"version = int(artifact.version[1:])"
|
| 199 |
-
]
|
| 200 |
-
},
|
| 201 |
-
{
|
| 202 |
-
"cell_type": "code",
|
| 203 |
-
"execution_count": null,
|
| 204 |
-
"id": "25fac577-146d-4e62-a3ea-f0baea79ef83",
|
| 205 |
-
"metadata": {},
|
| 206 |
-
"outputs": [],
|
| 207 |
-
"source": [
|
| 208 |
-
"version"
|
| 209 |
]
|
| 210 |
},
|
| 211 |
{
|
|
@@ -215,20 +138,10 @@
|
|
| 215 |
"metadata": {},
|
| 216 |
"outputs": [],
|
| 217 |
"source": [
|
| 218 |
-
"
|
| 219 |
-
"training_run = api.run(f'dalle-mini/dalle-mini/{
|
| 220 |
-
"config = training_run.config"
|
| 221 |
-
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"cell_type": "code",
|
| 225 |
-
"execution_count": null,
|
| 226 |
-
"id": "9b9393c6-0a3c-46a8-ba27-ba37982b0009",
|
| 227 |
-
"metadata": {},
|
| 228 |
-
"outputs": [],
|
| 229 |
-
"source": [
|
| 230 |
-
"# see summary metrics\n",
|
| 231 |
-
"training_run.summary"
|
| 232 |
]
|
| 233 |
},
|
| 234 |
{
|
|
@@ -239,7 +152,7 @@
|
|
| 239 |
"outputs": [],
|
| 240 |
"source": [
|
| 241 |
"# retrieve inference run details\n",
|
| 242 |
-
"def
|
| 243 |
" try:\n",
|
| 244 |
" inference_run = api.run(f'dalle-mini/dalle-mini/inference-{run_id}')\n",
|
| 245 |
" return inference_run.summary.get('_step', None)\n",
|
|
@@ -250,147 +163,103 @@
|
|
| 250 |
{
|
| 251 |
"cell_type": "code",
|
| 252 |
"execution_count": null,
|
| 253 |
-
"id": "
|
| 254 |
-
"metadata": {},
|
| 255 |
-
"outputs": [],
|
| 256 |
-
"source": [
|
| 257 |
-
"last_version_inference = get_last_version_inference(wandb_run)"
|
| 258 |
-
]
|
| 259 |
-
},
|
| 260 |
-
{
|
| 261 |
-
"cell_type": "code",
|
| 262 |
-
"execution_count": null,
|
| 263 |
-
"id": "8324835e-fd94-408e-b106-138be308480b",
|
| 264 |
-
"metadata": {},
|
| 265 |
-
"outputs": [],
|
| 266 |
-
"source": [
|
| 267 |
-
"if last_version_inference is None:\n",
|
| 268 |
-
" assert version == 0\n",
|
| 269 |
-
"elif last_version_inference >= version:\n",
|
| 270 |
-
" print(f'Version {version} has already been logged')\n",
|
| 271 |
-
"else:\n",
|
| 272 |
-
" assert version == last_version_inference + 1"
|
| 273 |
-
]
|
| 274 |
-
},
|
| 275 |
-
{
|
| 276 |
-
"cell_type": "code",
|
| 277 |
-
"execution_count": null,
|
| 278 |
-
"id": "8ce9d2d3-aea3-4d5e-834a-c5caf85dd117",
|
| 279 |
-
"metadata": {},
|
| 280 |
-
"outputs": [],
|
| 281 |
-
"source": [
|
| 282 |
-
"run = wandb.init(job_type='inference', config=config, id=f'inference-{wandb_run}', resume='allow')"
|
| 283 |
-
]
|
| 284 |
-
},
|
| 285 |
-
{
|
| 286 |
-
"cell_type": "code",
|
| 287 |
-
"execution_count": null,
|
| 288 |
-
"id": "ffe392c9-36d2-4aaa-a1b3-a827e348c1ef",
|
| 289 |
-
"metadata": {},
|
| 290 |
-
"outputs": [],
|
| 291 |
-
"source": [
|
| 292 |
-
"tmp_f.cleanup\n",
|
| 293 |
-
"tmp_f = tempfile.TemporaryDirectory()\n",
|
| 294 |
-
"tmp = tmp_f.name\n",
|
| 295 |
-
"#TODO: use context manager"
|
| 296 |
-
]
|
| 297 |
-
},
|
| 298 |
-
{
|
| 299 |
-
"cell_type": "code",
|
| 300 |
-
"execution_count": null,
|
| 301 |
-
"id": "562036ed-dc86-48af-90b1-9c18383b3552",
|
| 302 |
-
"metadata": {},
|
| 303 |
-
"outputs": [],
|
| 304 |
-
"source": [
|
| 305 |
-
"# remove tmp\n",
|
| 306 |
-
"tmp_f.cleanup()"
|
| 307 |
-
]
|
| 308 |
-
},
|
| 309 |
-
{
|
| 310 |
-
"cell_type": "code",
|
| 311 |
-
"execution_count": null,
|
| 312 |
-
"id": "299db1bb-fbe6-4d79-a48f-89893f8ed809",
|
| 313 |
-
"metadata": {},
|
| 314 |
-
"outputs": [],
|
| 315 |
-
"source": [
|
| 316 |
-
"artifact = run.use_artifact(artifact)"
|
| 317 |
-
]
|
| 318 |
-
},
|
| 319 |
-
{
|
| 320 |
-
"cell_type": "code",
|
| 321 |
-
"execution_count": null,
|
| 322 |
-
"id": "d71481bf-98aa-42cb-b7e2-545d13ae4309",
|
| 323 |
-
"metadata": {},
|
| 324 |
-
"outputs": [],
|
| 325 |
-
"source": [
|
| 326 |
-
"# only download required files\n",
|
| 327 |
-
"for f in ['config.json', 'flax_model.msgpack', 'merges.txt', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json', 'vocab.json']:\n",
|
| 328 |
-
" artifact.get_path(f).download(tmp)"
|
| 329 |
-
]
|
| 330 |
-
},
|
| 331 |
-
{
|
| 332 |
-
"cell_type": "code",
|
| 333 |
-
"execution_count": null,
|
| 334 |
-
"id": "6f8ad8dd-da8f-40f9-b438-e43b779d637c",
|
| 335 |
"metadata": {},
|
| 336 |
"outputs": [],
|
| 337 |
"source": [
|
| 338 |
-
"#
|
| 339 |
-
"
|
| 340 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
]
|
| 342 |
},
|
| 343 |
{
|
| 344 |
"cell_type": "code",
|
| 345 |
"execution_count": null,
|
| 346 |
-
"id": "
|
| 347 |
"metadata": {},
|
| 348 |
"outputs": [],
|
| 349 |
"source": [
|
| 350 |
-
"
|
| 351 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
]
|
| 353 |
},
|
| 354 |
{
|
| 355 |
"cell_type": "code",
|
| 356 |
"execution_count": null,
|
| 357 |
-
"id": "
|
| 358 |
"metadata": {},
|
| 359 |
"outputs": [],
|
| 360 |
"source": [
|
| 361 |
-
"
|
| 362 |
]
|
| 363 |
},
|
| 364 |
{
|
| 365 |
"cell_type": "code",
|
| 366 |
"execution_count": null,
|
| 367 |
-
"id": "
|
| 368 |
"metadata": {},
|
| 369 |
"outputs": [],
|
| 370 |
"source": [
|
| 371 |
-
"
|
| 372 |
-
"
|
| 373 |
-
"
|
| 374 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 375 |
-
" def p_generate(tokenized_prompt, key, params):\n",
|
| 376 |
-
" return model.generate(\n",
|
| 377 |
-
" **tokenized_prompt,\n",
|
| 378 |
-
" do_sample=True,\n",
|
| 379 |
-
" num_beams=1,\n",
|
| 380 |
-
" prng_key=key,\n",
|
| 381 |
-
" params=params\n",
|
| 382 |
-
" )\n",
|
| 383 |
-
" \n",
|
| 384 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 385 |
-
" def p_decode(indices, params):\n",
|
| 386 |
-
" return vqgan.decode_code(indices, params=params)\n",
|
| 387 |
-
" \n",
|
| 388 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 389 |
-
" def p_clip(inputs):\n",
|
| 390 |
-
" logits = clip(**inputs).logits_per_image\n",
|
| 391 |
-
" return logits\n",
|
| 392 |
-
" \n",
|
| 393 |
-
" functions_pmapped = False"
|
| 394 |
]
|
| 395 |
},
|
| 396 |
{
|
|
|
|
| 13 |
"import random\n",
|
| 14 |
"import numpy as np\n",
|
| 15 |
"from PIL import Image\n",
|
| 16 |
+
"from tqdm import tqdm\n",
|
| 17 |
"import jax\n",
|
| 18 |
"import jax.numpy as jnp\n",
|
| 19 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
|
|
|
| 48 |
"num_images = 128\n",
|
| 49 |
"top_k = 8\n",
|
| 50 |
"text_normalizer = TextNormalizer() if normalize_text else None\n",
|
| 51 |
+
"padding_item = 'NONE'\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"seed = random.randint(0, 2**32-1)\n",
|
| 53 |
+
"key = jax.random.PRNGKey(seed)\n",
|
| 54 |
+
"api = wandb.Api()"
|
| 55 |
]
|
| 56 |
},
|
| 57 |
{
|
|
|
|
| 63 |
"source": [
|
| 64 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
| 65 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
| 66 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
| 67 |
+
"clip_params = replicate(clip.params)\n",
|
| 68 |
+
"vqgan_params = replicate(vqgan.params)"
|
| 69 |
]
|
| 70 |
},
|
| 71 |
{
|
| 72 |
"cell_type": "code",
|
| 73 |
"execution_count": null,
|
| 74 |
+
"id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
|
| 75 |
"metadata": {},
|
| 76 |
"outputs": [],
|
| 77 |
"source": [
|
| 78 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 79 |
+
"def p_decode(indices, params):\n",
|
| 80 |
+
" return vqgan.decode_code(indices, params=params)\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 83 |
+
"def p_clip(inputs):\n",
|
| 84 |
+
" logits = clip(**inputs).logits_per_image\n",
|
| 85 |
+
" return logits"
|
| 86 |
]
|
| 87 |
},
|
| 88 |
{
|
|
|
|
| 104 |
" samples = [samples[i:i+batch_size] for i in range(0, len(samples), batch_size)]"
|
| 105 |
]
|
| 106 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
{
|
| 108 |
"cell_type": "code",
|
| 109 |
"execution_count": null,
|
|
|
|
| 113 |
"source": [
|
| 114 |
"# TODO: iterate on runs\n",
|
| 115 |
"wandb_run = wandb_runs[0]\n",
|
| 116 |
+
"model_pmapped = False"
|
| 117 |
]
|
| 118 |
},
|
| 119 |
{
|
|
|
|
| 123 |
"metadata": {},
|
| 124 |
"outputs": [],
|
| 125 |
"source": [
|
| 126 |
+
"def get_artifact_versions(run_id):\n",
|
| 127 |
+
" try:\n",
|
| 128 |
+
" versions = api.artifact_versions(type_name='bart_model', name=f'dalle-mini/dalle-mini/model-{run_id}', per_page=10000)\n",
|
| 129 |
+
" except:\n",
|
| 130 |
+
" versions = []\n",
|
| 131 |
+
" return versions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
]
|
| 133 |
},
|
| 134 |
{
|
|
|
|
| 138 |
"metadata": {},
|
| 139 |
"outputs": [],
|
| 140 |
"source": [
|
| 141 |
+
"def get_training_config(run_id):\n",
|
| 142 |
+
" training_run = api.run(f'dalle-mini/dalle-mini/{run_id}')\n",
|
| 143 |
+
" config = training_run.config\n",
|
| 144 |
+
" return config"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
]
|
| 146 |
},
|
| 147 |
{
|
|
|
|
| 152 |
"outputs": [],
|
| 153 |
"source": [
|
| 154 |
"# retrieve inference run details\n",
|
| 155 |
+
"def get_last_inference_version(run_id):\n",
|
| 156 |
" try:\n",
|
| 157 |
" inference_run = api.run(f'dalle-mini/dalle-mini/inference-{run_id}')\n",
|
| 158 |
" return inference_run.summary.get('_step', None)\n",
|
|
|
|
| 163 |
{
|
| 164 |
"cell_type": "code",
|
| 165 |
"execution_count": null,
|
| 166 |
+
"id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"metadata": {},
|
| 168 |
"outputs": [],
|
| 169 |
"source": [
|
| 170 |
+
"# compile functions - needed only once per run\n",
|
| 171 |
+
"def pmap_model_function(model):\n",
|
| 172 |
+
" \n",
|
| 173 |
+
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
| 174 |
+
" def _generate(tokenized_prompt, key, params):\n",
|
| 175 |
+
" return model.generate(\n",
|
| 176 |
+
" **tokenized_prompt,\n",
|
| 177 |
+
" do_sample=True,\n",
|
| 178 |
+
" num_beams=1,\n",
|
| 179 |
+
" prng_key=key,\n",
|
| 180 |
+
" params=params\n",
|
| 181 |
+
" )\n",
|
| 182 |
+
" \n",
|
| 183 |
+
" return _generate"
|
| 184 |
]
|
| 185 |
},
|
| 186 |
{
|
| 187 |
"cell_type": "code",
|
| 188 |
"execution_count": null,
|
| 189 |
+
"id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
|
| 190 |
"metadata": {},
|
| 191 |
"outputs": [],
|
| 192 |
"source": [
|
| 193 |
+
"def log_run(run_id):\n",
|
| 194 |
+
" artifact_versions = get_artifact_versions(run_id)\n",
|
| 195 |
+
" last_inference_version = get_last_inference_version(run_id)\n",
|
| 196 |
+
" training_config = get_training_config(run_id)\n",
|
| 197 |
+
" run = None\n",
|
| 198 |
+
" p_generate = None\n",
|
| 199 |
+
" model_files = ['config.json', 'flax_model.msgpack', 'merges.txt', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json', 'vocab.json']\n",
|
| 200 |
+
" for artifact in artifact_versions:\n",
|
| 201 |
+
" print(f'Processing artifact: {artifact.name}')\n",
|
| 202 |
+
" version = int(artifact.version[1:])\n",
|
| 203 |
+
" if last_version_inference is None:\n",
|
| 204 |
+
" # we should start from v0\n",
|
| 205 |
+
" assert version == 0\n",
|
| 206 |
+
" elif version <= last_version_inference:\n",
|
| 207 |
+
" print(f'v{version} has already been logged (versions logged up to v{last_version_inference}')\n",
|
| 208 |
+
" else:\n",
|
| 209 |
+
" # check we are logging the correct version\n",
|
| 210 |
+
" assert version == last_version_inference + 1\n",
|
| 211 |
+
" \n",
|
| 212 |
+
" # start/resume corresponding run\n",
|
| 213 |
+
" if run is None:\n",
|
| 214 |
+
" run = wandb.init(job_type='inference', config=config, id=f'inference-{wandb_run}', resume='allow')\n",
|
| 215 |
+
" \n",
|
| 216 |
+
" # work in temporary directory\n",
|
| 217 |
+
" with tempfile.TemporaryDirectory() as tmp:\n",
|
| 218 |
+
" \n",
|
| 219 |
+
" # download model files\n",
|
| 220 |
+
" artifact = run.use_artifact(artifact)\n",
|
| 221 |
+
" for f in model_files:\n",
|
| 222 |
+
" artifact.get_path(f).download(tmp)\n",
|
| 223 |
+
" \n",
|
| 224 |
+
" # load tokenizer and model\n",
|
| 225 |
+
" tokenizer = BartTokenizer.from_pretrained(tmp)\n",
|
| 226 |
+
" model = CustomFlaxBartForConditionalGeneration.from_pretrained(tmp)\n",
|
| 227 |
+
" model_params = replicate(model.params)\n",
|
| 228 |
+
" \n",
|
| 229 |
+
" # pmap model function needs to happen only once per model config\n",
|
| 230 |
+
" if p_generate is None:\n",
|
| 231 |
+
" p_generate = pmap_model_function(model)\n",
|
| 232 |
+
" \n",
|
| 233 |
+
" for batch in tqdm(samples):\n",
|
| 234 |
+
" prompts = [x['Caption'] for x in batch]\n",
|
| 235 |
+
" processed_prompts = [text_normalizer(x) for x in prompts] if normalize_text else prompts\n",
|
| 236 |
+
" \n",
|
| 237 |
+
"\n",
|
| 238 |
+
" \n",
|
| 239 |
+
" \n",
|
| 240 |
+
" "
|
| 241 |
]
|
| 242 |
},
|
| 243 |
{
|
| 244 |
"cell_type": "code",
|
| 245 |
"execution_count": null,
|
| 246 |
+
"id": "4d542342-3232-48a5-a0aa-3cb5c157aa8c",
|
| 247 |
"metadata": {},
|
| 248 |
"outputs": [],
|
| 249 |
"source": [
|
| 250 |
+
"log_run(wandb_run)"
|
| 251 |
]
|
| 252 |
},
|
| 253 |
{
|
| 254 |
"cell_type": "code",
|
| 255 |
"execution_count": null,
|
| 256 |
+
"id": "4e4c7d0c-2848-4f88-b967-82fd571534f1",
|
| 257 |
"metadata": {},
|
| 258 |
"outputs": [],
|
| 259 |
"source": [
|
| 260 |
+
"def log_runs(runs):\n",
|
| 261 |
+
" for run in tqdm(runs):\n",
|
| 262 |
+
" log_run(run)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
]
|
| 264 |
},
|
| 265 |
{
|