Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
82fad8c
1
Parent(s):
b4dfea0
Notebook to encode splitted YFCC100M files.
Browse filesFile paths need to be updated.
Splits can be created using a command like:
```
mkdir metadata_splitted
cd metadata_splitted
split -l 500000 --numeric-suffixes ../metadata_YFCC100M.jsonl metadata_split_
```
Encoded files will be saved to the directory specified by
`yfcc100m_output`, and their names will be the same as the source
splits.
encoding/vqgan-jax-encoding-yfcc100m-splitted.ipynb
ADDED
|
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "d0b72877",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# vqgan-jax-encoding-yfcc100m"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "markdown",
|
| 13 |
+
"id": "747733a4",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"Same as `vqgan-jax-encoding-with-captions`, but for YFCC100M.\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"This dataset was prepared by @borisdayma in Json lines format."
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": 1,
|
| 24 |
+
"id": "3b59489e",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"outputs": [],
|
| 27 |
+
"source": [
|
| 28 |
+
"import io\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"import requests\n",
|
| 31 |
+
"from PIL import Image\n",
|
| 32 |
+
"import numpy as np\n",
|
| 33 |
+
"from tqdm import tqdm\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"import torch\n",
|
| 36 |
+
"import torchvision.transforms as T\n",
|
| 37 |
+
"import torchvision.transforms.functional as TF\n",
|
| 38 |
+
"from torchvision.transforms import InterpolationMode\n",
|
| 39 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 40 |
+
"from torchvision.datasets.folder import default_loader\n",
|
| 41 |
+
"\n",
|
| 42 |
+
"import jax\n",
|
| 43 |
+
"from jax import pmap"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "markdown",
|
| 48 |
+
"id": "511c3b9e",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"source": [
|
| 51 |
+
"## VQGAN-JAX model"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "markdown",
|
| 56 |
+
"id": "bb408f6c",
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"source": [
|
| 59 |
+
"`dalle_mini` is a local package that contains the VQGAN-JAX model and other utilities."
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "code",
|
| 64 |
+
"execution_count": 2,
|
| 65 |
+
"id": "2ca50dc7",
|
| 66 |
+
"metadata": {},
|
| 67 |
+
"outputs": [],
|
| 68 |
+
"source": [
|
| 69 |
+
"from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel"
|
| 70 |
+
]
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"cell_type": "markdown",
|
| 74 |
+
"id": "7b60da9a",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"source": [
|
| 77 |
+
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
|
| 78 |
+
]
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"cell_type": "code",
|
| 82 |
+
"execution_count": 4,
|
| 83 |
+
"id": "29ce8b15",
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "markdown",
|
| 92 |
+
"id": "c7c4c1e6",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"source": [
|
| 95 |
+
"## Dataset"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "markdown",
|
| 100 |
+
"id": "fd4c608e",
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"source": [
|
| 103 |
+
"I splitted the files to do the process iteratively. Pandas struggles with memory and `datasets` has problems when filtering files, as described [in this issue](https://github.com/huggingface/datasets/issues/2644)."
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": 5,
|
| 109 |
+
"id": "6c058636",
|
| 110 |
+
"metadata": {},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"import pandas as pd\n",
|
| 114 |
+
"from pathlib import Path"
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 6,
|
| 120 |
+
"id": "81b19eca",
|
| 121 |
+
"metadata": {},
|
| 122 |
+
"outputs": [],
|
| 123 |
+
"source": [
|
| 124 |
+
"yfcc100m = Path('/sddata/dalle-mini/YFCC100M_OpenAI_subset')\n",
|
| 125 |
+
"# Images are 'sharded' from the following directory\n",
|
| 126 |
+
"yfcc100m_images = yfcc100m/'data'/'images'\n",
|
| 127 |
+
"yfcc100m_metadata_splits = yfcc100m/'metadata_splitted'\n",
|
| 128 |
+
"yfcc100m_output = yfcc100m/'metadata_encoded'"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": 7,
|
| 134 |
+
"id": "40873de9",
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [
|
| 137 |
+
{
|
| 138 |
+
"data": {
|
| 139 |
+
"text/plain": [
|
| 140 |
+
"[PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04'),\n",
|
| 141 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25'),\n",
|
| 142 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_17'),\n",
|
| 143 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_10'),\n",
|
| 144 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_22'),\n",
|
| 145 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_28'),\n",
|
| 146 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_09'),\n",
|
| 147 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_03'),\n",
|
| 148 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_07'),\n",
|
| 149 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_26'),\n",
|
| 150 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_14'),\n",
|
| 151 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_19'),\n",
|
| 152 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_13'),\n",
|
| 153 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_21'),\n",
|
| 154 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_00'),\n",
|
| 155 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_02'),\n",
|
| 156 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_08'),\n",
|
| 157 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_11'),\n",
|
| 158 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_29'),\n",
|
| 159 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_23'),\n",
|
| 160 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_24'),\n",
|
| 161 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_16'),\n",
|
| 162 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_05'),\n",
|
| 163 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_01'),\n",
|
| 164 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_12'),\n",
|
| 165 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_18'),\n",
|
| 166 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_20'),\n",
|
| 167 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_27'),\n",
|
| 168 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_15'),\n",
|
| 169 |
+
" PosixPath('/sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_06')]"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"execution_count": 7,
|
| 173 |
+
"metadata": {},
|
| 174 |
+
"output_type": "execute_result"
|
| 175 |
+
}
|
| 176 |
+
],
|
| 177 |
+
"source": [
|
| 178 |
+
"all_splits = [x for x in yfcc100m_metadata_splits.iterdir() if x.is_file()]\n",
|
| 179 |
+
"all_splits"
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"cell_type": "markdown",
|
| 184 |
+
"id": "f604e3c9",
|
| 185 |
+
"metadata": {},
|
| 186 |
+
"source": [
|
| 187 |
+
"### Cleanup"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"cell_type": "code",
|
| 192 |
+
"execution_count": 8,
|
| 193 |
+
"id": "dea06b92",
|
| 194 |
+
"metadata": {},
|
| 195 |
+
"outputs": [],
|
| 196 |
+
"source": [
|
| 197 |
+
"def image_exists(root: str, name: str, ext: str):\n",
|
| 198 |
+
" image_path = (Path(root)/name[0:3]/name[3:6]/name).with_suffix(ext)\n",
|
| 199 |
+
" return image_path.exists()"
|
| 200 |
+
]
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"cell_type": "code",
|
| 204 |
+
"execution_count": 9,
|
| 205 |
+
"id": "1d34d7aa",
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"outputs": [],
|
| 208 |
+
"source": [
|
| 209 |
+
"class YFC100Dataset(Dataset):\n",
|
| 210 |
+
" def __init__(self, image_list: pd.DataFrame, images_root: str, image_size: int, max_items=None):\n",
|
| 211 |
+
" \"\"\"\n",
|
| 212 |
+
" :param image_list: DataFrame with clean entries - all images must exist.\n",
|
| 213 |
+
" :param images_root: Root directory containing the images\n",
|
| 214 |
+
" :param image_size: Image size. Source images will be resized and center-cropped.\n",
|
| 215 |
+
" :max_items: Limit dataset size for debugging\n",
|
| 216 |
+
" \"\"\"\n",
|
| 217 |
+
" self.image_list = image_list\n",
|
| 218 |
+
" self.images_root = Path(images_root)\n",
|
| 219 |
+
" if max_items is not None: self.image_list = self.image_list[:max_items]\n",
|
| 220 |
+
" self.image_size = image_size\n",
|
| 221 |
+
" \n",
|
| 222 |
+
" def __len__(self):\n",
|
| 223 |
+
" return len(self.image_list)\n",
|
| 224 |
+
" \n",
|
| 225 |
+
" def _get_raw_image(self, i):\n",
|
| 226 |
+
" image_name = self.image_list.iloc[0].key\n",
|
| 227 |
+
" image_path = (self.images_root/image_name[0:3]/image_name[3:6]/image_name).with_suffix('.jpg')\n",
|
| 228 |
+
" return default_loader(image_path)\n",
|
| 229 |
+
" \n",
|
| 230 |
+
" def resize_image(self, image):\n",
|
| 231 |
+
" s = min(image.size)\n",
|
| 232 |
+
" r = self.image_size / s\n",
|
| 233 |
+
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
|
| 234 |
+
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
|
| 235 |
+
" image = TF.center_crop(image, output_size = 2 * [self.image_size])\n",
|
| 236 |
+
" # FIXME: np.array is necessary in my installation, but it should be automatic\n",
|
| 237 |
+
" image = torch.unsqueeze(T.ToTensor()(np.array(image)), 0)\n",
|
| 238 |
+
" image = image.permute(0, 2, 3, 1).numpy()\n",
|
| 239 |
+
" return image\n",
|
| 240 |
+
" \n",
|
| 241 |
+
" def __getitem__(self, i):\n",
|
| 242 |
+
" image = self._get_raw_image(i)\n",
|
| 243 |
+
" image = self.resize_image(image)\n",
|
| 244 |
+
" # Just return the image, not the caption\n",
|
| 245 |
+
" return image"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "markdown",
|
| 250 |
+
"id": "62ad01c3",
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"source": [
|
| 253 |
+
"## Encoding"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "code",
|
| 258 |
+
"execution_count": 10,
|
| 259 |
+
"id": "88f36d0b",
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"def encode(model, batch):\n",
|
| 264 |
+
" print(\"jitting encode function\")\n",
|
| 265 |
+
" _, indices = model.encode(batch)\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"# # FIXME: The model does not run in my computer (no cudNN currently installed) - faking it\n",
|
| 268 |
+
"# indices = np.random.randint(0, 16384, (batch.shape[0], 256))\n",
|
| 269 |
+
" return indices"
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": null,
|
| 275 |
+
"id": "d1f45dd8",
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"#FIXME\n",
|
| 280 |
+
"# import random\n",
|
| 281 |
+
"# model = {}"
|
| 282 |
+
]
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"cell_type": "code",
|
| 286 |
+
"execution_count": 11,
|
| 287 |
+
"id": "1f35f0cb",
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": [
|
| 291 |
+
"from flax.training.common_utils import shard\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"def superbatch_generator(dataloader):\n",
|
| 294 |
+
" iter_loader = iter(dataloader)\n",
|
| 295 |
+
" for batch in iter_loader:\n",
|
| 296 |
+
" batch = batch.squeeze(1)\n",
|
| 297 |
+
" # Skip incomplete last batch\n",
|
| 298 |
+
" if batch.shape[0] == dataloader.batch_size:\n",
|
| 299 |
+
" yield shard(batch)"
|
| 300 |
+
]
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"cell_type": "code",
|
| 304 |
+
"execution_count": 13,
|
| 305 |
+
"id": "2210705b",
|
| 306 |
+
"metadata": {},
|
| 307 |
+
"outputs": [],
|
| 308 |
+
"source": [
|
| 309 |
+
"import os\n",
|
| 310 |
+
"import jax\n",
|
| 311 |
+
"\n",
|
| 312 |
+
"def encode_captioned_dataset(dataset, output_jsonl, batch_size=32, num_workers=16):\n",
|
| 313 |
+
" if os.path.isfile(output_jsonl):\n",
|
| 314 |
+
" print(f\"Destination file {output_jsonl} already exists, please move away.\")\n",
|
| 315 |
+
" return\n",
|
| 316 |
+
" \n",
|
| 317 |
+
" num_tpus = jax.device_count()\n",
|
| 318 |
+
" dataloader = DataLoader(dataset, batch_size=num_tpus*batch_size, num_workers=num_workers)\n",
|
| 319 |
+
" superbatches = superbatch_generator(dataloader)\n",
|
| 320 |
+
" \n",
|
| 321 |
+
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
|
| 322 |
+
"\n",
|
| 323 |
+
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
|
| 324 |
+
" # We keep the file open to prevent excessive file seeks.\n",
|
| 325 |
+
" with open(output_jsonl, \"w\") as file:\n",
|
| 326 |
+
" iterations = len(dataset) // (batch_size * num_tpus)\n",
|
| 327 |
+
" for n in tqdm(range(iterations)):\n",
|
| 328 |
+
" superbatch = next(superbatches)\n",
|
| 329 |
+
" encoded = p_encoder(superbatch.numpy())\n",
|
| 330 |
+
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
| 331 |
+
"\n",
|
| 332 |
+
" # Extract fields from the dataset internal `image_list` property, and save to disk\n",
|
| 333 |
+
" # We need to read from the df because the Dataset only returns images\n",
|
| 334 |
+
" start_index = n * batch_size * num_tpus\n",
|
| 335 |
+
" end_index = (n+1) * batch_size * num_tpus\n",
|
| 336 |
+
" keys = dataset.image_list[\"key\"][start_index:end_index].values\n",
|
| 337 |
+
" captions = dataset.image_list[\"caption\"][start_index:end_index].values\n",
|
| 338 |
+
"# encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
|
| 339 |
+
" batch_df = pd.DataFrame.from_dict({\"key\": keys, \"caption\": captions, \"encoding\": encoded})\n",
|
| 340 |
+
" batch_df.to_json(file, orient='records', lines=True)"
|
| 341 |
+
]
|
| 342 |
+
},
|
| 343 |
+
{
|
| 344 |
+
"cell_type": "code",
|
| 345 |
+
"execution_count": 14,
|
| 346 |
+
"id": "7704863d",
|
| 347 |
+
"metadata": {},
|
| 348 |
+
"outputs": [
|
| 349 |
+
{
|
| 350 |
+
"name": "stdout",
|
| 351 |
+
"output_type": "stream",
|
| 352 |
+
"text": [
|
| 353 |
+
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_04\n",
|
| 354 |
+
"54024 selected from 500000 total entries\n"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"name": "stderr",
|
| 359 |
+
"output_type": "stream",
|
| 360 |
+
"text": [
|
| 361 |
+
"INFO:absl:Starting the local TPU driver.\n",
|
| 362 |
+
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
|
| 363 |
+
"INFO:absl:Unable to initialize backend 'tpu': Invalid argument: TpuPlatform is not available.\n",
|
| 364 |
+
" 0%| | 0/31 [00:00<?, ?it/s]"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"name": "stdout",
|
| 369 |
+
"output_type": "stream",
|
| 370 |
+
"text": [
|
| 371 |
+
"jitting encode function\n"
|
| 372 |
+
]
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"name": "stderr",
|
| 376 |
+
"output_type": "stream",
|
| 377 |
+
"text": [
|
| 378 |
+
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:02<00:00, 10.61it/s]\n"
|
| 379 |
+
]
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"name": "stdout",
|
| 383 |
+
"output_type": "stream",
|
| 384 |
+
"text": [
|
| 385 |
+
"Processing /sddata/dalle-mini/YFCC100M_OpenAI_subset/metadata_splitted/metadata_split_25\n",
|
| 386 |
+
"99530 selected from 500000 total entries\n"
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"name": "stderr",
|
| 391 |
+
"output_type": "stream",
|
| 392 |
+
"text": [
|
| 393 |
+
" 3%|██▌ | 1/31 [00:01<00:53, 1.79s/it]"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"name": "stdout",
|
| 398 |
+
"output_type": "stream",
|
| 399 |
+
"text": [
|
| 400 |
+
"jitting encode function\n"
|
| 401 |
+
]
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"name": "stderr",
|
| 405 |
+
"output_type": "stream",
|
| 406 |
+
"text": [
|
| 407 |
+
"100%|███████████████████████████████████████████████████████████████████████████████| 31/31 [00:03<00:00, 9.92it/s]\n"
|
| 408 |
+
]
|
| 409 |
+
}
|
| 410 |
+
],
|
| 411 |
+
"source": [
|
| 412 |
+
"for split in all_splits:\n",
|
| 413 |
+
" print(f\"Processing {split}\")\n",
|
| 414 |
+
" df = pd.read_json(split, orient=\"records\", lines=True)\n",
|
| 415 |
+
" df['image_exists'] = df.apply(lambda row: image_exists(yfcc100m_images, row['key'], '.' + row['ext']), axis=1)\n",
|
| 416 |
+
" print(f\"{len(df[df.image_exists])} selected from {len(df)} total entries\")\n",
|
| 417 |
+
" \n",
|
| 418 |
+
" df = df[df.image_exists]\n",
|
| 419 |
+
" captions = df.apply(lambda row: ' '.join([row[\"title_clean\"], row[\"description_clean\"]]), axis=1)\n",
|
| 420 |
+
" df[\"caption\"] = captions.values\n",
|
| 421 |
+
" \n",
|
| 422 |
+
" dataset = YFC100Dataset(\n",
|
| 423 |
+
" image_list = df,\n",
|
| 424 |
+
" images_root = yfcc100m_images,\n",
|
| 425 |
+
" image_size = 256,\n",
|
| 426 |
+
"# max_items = 2000,\n",
|
| 427 |
+
" )\n",
|
| 428 |
+
" \n",
|
| 429 |
+
" encode_captioned_dataset(dataset, yfcc100m_output/split.name, batch_size=64, num_workers=16)"
|
| 430 |
+
]
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"cell_type": "markdown",
|
| 434 |
+
"id": "8953dd84",
|
| 435 |
+
"metadata": {},
|
| 436 |
+
"source": [
|
| 437 |
+
"----"
|
| 438 |
+
]
|
| 439 |
+
}
|
| 440 |
+
],
|
| 441 |
+
"metadata": {
|
| 442 |
+
"kernelspec": {
|
| 443 |
+
"display_name": "Python 3 (ipykernel)",
|
| 444 |
+
"language": "python",
|
| 445 |
+
"name": "python3"
|
| 446 |
+
},
|
| 447 |
+
"language_info": {
|
| 448 |
+
"codemirror_mode": {
|
| 449 |
+
"name": "ipython",
|
| 450 |
+
"version": 3
|
| 451 |
+
},
|
| 452 |
+
"file_extension": ".py",
|
| 453 |
+
"mimetype": "text/x-python",
|
| 454 |
+
"name": "python",
|
| 455 |
+
"nbconvert_exporter": "python",
|
| 456 |
+
"pygments_lexer": "ipython3",
|
| 457 |
+
"version": "3.8.10"
|
| 458 |
+
}
|
| 459 |
+
},
|
| 460 |
+
"nbformat": 4,
|
| 461 |
+
"nbformat_minor": 5
|
| 462 |
+
}
|