Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
6047b49
1
Parent(s):
ecf5f29
Notebooks that demonstrate streaming encoding
Browse filesUsing either Huggingface Datasets, or webdataset.
Note that parallel processing is not possible for Huggingface Datasets
in streaming mode. A local copy or the use of webdataset are preferred
for large streaming datasets.
dev/encoding/vqgan-jax-encoding-streaming.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
dev/encoding/vqgan-jax-encoding-webdataset.ipynb
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "d0b72877",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# vqgan-jax-encoding-alamy"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "markdown",
|
| 13 |
+
"id": "ba7b31e6",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"Encoding notebook for Alamy dataset."
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": 1,
|
| 22 |
+
"id": "3b59489e",
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"import numpy as np\n",
|
| 27 |
+
"from tqdm import tqdm\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"import torch\n",
|
| 30 |
+
"import torchvision.transforms as T\n",
|
| 31 |
+
"import torchvision.transforms.functional as TF\n",
|
| 32 |
+
"from torchvision.transforms import InterpolationMode\n",
|
| 33 |
+
"import math\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"import webdataset as wds\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"import jax\n",
|
| 38 |
+
"from jax import pmap"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "markdown",
|
| 43 |
+
"id": "c7c4c1e6",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"source": [
|
| 46 |
+
"## Dataset and Parameters"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "code",
|
| 51 |
+
"execution_count": null,
|
| 52 |
+
"id": "13c6631b",
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"shards = 'https://s3.us-west-1.wasabisys.com/doodlebot-wasabi/datasets/alamy/webdataset/alamy-{000..895}.tar'\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"# Enable curl retries to try to work around temporary network / server errors.\n",
|
| 59 |
+
"# This shouldn't be necessary when using reliable servers.\n",
|
| 60 |
+
"shards = f'pipe:curl -s --retry 5 --retry-delay 5 -L {shards} || true'\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"length = 44710810 # estimate\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"from pathlib import Path\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# Output directory for encoded files\n",
|
| 67 |
+
"encoded_output = Path.home()/'data'/'alamy'/'encoded'\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"batch_size = 128 # Per device\n",
|
| 70 |
+
"num_workers = 8 # Using larger numbers seemed to be less reliable in this case."
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 3,
|
| 76 |
+
"id": "3435fb85",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"bs = batch_size * jax.device_count() # Use a smaller size for testing\n",
|
| 81 |
+
"batches = math.ceil(length / bs)"
|
| 82 |
+
]
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"execution_count": 4,
|
| 87 |
+
"id": "669b35df",
|
| 88 |
+
"metadata": {},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": [
|
| 91 |
+
"def center_crop(image, max_size=256):\n",
|
| 92 |
+
" # Note: we allow upscaling too. We should exclude small images. \n",
|
| 93 |
+
" image = TF.resize(image, max_size, interpolation=InterpolationMode.LANCZOS)\n",
|
| 94 |
+
" image = TF.center_crop(image, output_size=2 * [max_size])\n",
|
| 95 |
+
" return image\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"preprocess_image = T.Compose([\n",
|
| 98 |
+
" center_crop,\n",
|
| 99 |
+
" T.ToTensor(),\n",
|
| 100 |
+
" lambda t: t.permute(1, 2, 0) # Reorder, we need dimensions last\n",
|
| 101 |
+
"])\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"# Is there a shortcut for this?\n",
|
| 104 |
+
"def extract_from_json(item):\n",
|
| 105 |
+
" item['caption'] = item['json']['caption']\n",
|
| 106 |
+
" item['url'] = item['json']['url']\n",
|
| 107 |
+
" return item"
|
| 108 |
+
]
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"cell_type": "code",
|
| 112 |
+
"execution_count": 7,
|
| 113 |
+
"id": "369d9719",
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"outputs": [],
|
| 116 |
+
"source": [
|
| 117 |
+
"# Log exceptions to a hardcoded file\n",
|
| 118 |
+
"def ignore_and_log(exn):\n",
|
| 119 |
+
" with open('errors.txt', 'a') as f:\n",
|
| 120 |
+
" f.write(f'{exn}\\n')\n",
|
| 121 |
+
" return True\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"# Or simply use `wds.ignore_and_continue`\n",
|
| 124 |
+
"exception_handler = ignore_and_log\n",
|
| 125 |
+
"exception_handler = wds.warn_and_continue"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 8,
|
| 131 |
+
"id": "5149b6d5",
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [],
|
| 134 |
+
"source": [
|
| 135 |
+
"dataset = wds.WebDataset(shards,\n",
|
| 136 |
+
" length=batches, # Hint so `len` is implemented\n",
|
| 137 |
+
" shardshuffle=False, # Keep same order for encoded files for easier bookkeeping\n",
|
| 138 |
+
" handler=exception_handler, # Ignore read errors instead of failing. See also: `warn_and_continue`\n",
|
| 139 |
+
")\n",
|
| 140 |
+
"\n",
|
| 141 |
+
"dataset = (dataset \n",
|
| 142 |
+
" .decode('pil') # decode image with PIL\n",
|
| 143 |
+
" .map(extract_from_json)\n",
|
| 144 |
+
" .map_dict(jpg=preprocess_image, handler=exception_handler)\n",
|
| 145 |
+
" .to_tuple('url', 'jpg', 'caption') # filter to keep only url (for reference), image, caption.\n",
|
| 146 |
+
" .batched(bs)) # better to batch in the dataset (but we could also do it in the dataloader) - this arg does not affect speed and we could remove it"
|
| 147 |
+
]
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"cell_type": "code",
|
| 151 |
+
"execution_count": 10,
|
| 152 |
+
"id": "8cac98cb",
|
| 153 |
+
"metadata": {
|
| 154 |
+
"scrolled": true
|
| 155 |
+
},
|
| 156 |
+
"outputs": [
|
| 157 |
+
{
|
| 158 |
+
"name": "stdout",
|
| 159 |
+
"output_type": "stream",
|
| 160 |
+
"text": [
|
| 161 |
+
"CPU times: user 8min 26s, sys: 12.5 s, total: 8min 38s\n",
|
| 162 |
+
"Wall time: 14.4 s\n"
|
| 163 |
+
]
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"source": [
|
| 167 |
+
"%%time\n",
|
| 168 |
+
"urls, images, captions = next(iter(dataset))"
|
| 169 |
+
]
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"cell_type": "code",
|
| 173 |
+
"execution_count": 7,
|
| 174 |
+
"id": "cd268fbf",
|
| 175 |
+
"metadata": {},
|
| 176 |
+
"outputs": [
|
| 177 |
+
{
|
| 178 |
+
"data": {
|
| 179 |
+
"text/plain": [
|
| 180 |
+
"torch.Size([1024, 256, 256, 3])"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
"execution_count": 7,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"output_type": "execute_result"
|
| 186 |
+
}
|
| 187 |
+
],
|
| 188 |
+
"source": [
|
| 189 |
+
"images.shape"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "markdown",
|
| 194 |
+
"id": "44d50a51",
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"source": [
|
| 197 |
+
"### Torch DataLoader"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"cell_type": "code",
|
| 202 |
+
"execution_count": 8,
|
| 203 |
+
"id": "e2df5e13",
|
| 204 |
+
"metadata": {},
|
| 205 |
+
"outputs": [],
|
| 206 |
+
"source": [
|
| 207 |
+
"dl = torch.utils.data.DataLoader(dataset, batch_size=None, num_workers=num_workers)"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "markdown",
|
| 212 |
+
"id": "a354472b",
|
| 213 |
+
"metadata": {},
|
| 214 |
+
"source": [
|
| 215 |
+
"## VQGAN-JAX model"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "code",
|
| 220 |
+
"execution_count": 9,
|
| 221 |
+
"id": "2fcf01d7",
|
| 222 |
+
"metadata": {},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "markdown",
|
| 230 |
+
"id": "9daa636d",
|
| 231 |
+
"metadata": {},
|
| 232 |
+
"source": [
|
| 233 |
+
"We'll use a VQGAN trained with Taming Transformers and converted to a JAX model."
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": 10,
|
| 239 |
+
"id": "47a8b818",
|
| 240 |
+
"metadata": {
|
| 241 |
+
"scrolled": true
|
| 242 |
+
},
|
| 243 |
+
"outputs": [
|
| 244 |
+
{
|
| 245 |
+
"name": "stdout",
|
| 246 |
+
"output_type": "stream",
|
| 247 |
+
"text": [
|
| 248 |
+
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
| 249 |
+
]
|
| 250 |
+
}
|
| 251 |
+
],
|
| 252 |
+
"source": [
|
| 253 |
+
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "markdown",
|
| 258 |
+
"id": "62ad01c3",
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"source": [
|
| 261 |
+
"## Encoding"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "markdown",
|
| 266 |
+
"id": "20357f74",
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"source": [
|
| 269 |
+
"Encoding is really simple using `shard` to automatically distribute \"superbatches\" across devices, and `pmap`. This is all it takes to create our encoding function, that will be jitted on first use."
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": 11,
|
| 275 |
+
"id": "6686b004",
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"from flax.training.common_utils import shard\n",
|
| 280 |
+
"from functools import partial"
|
| 281 |
+
]
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"cell_type": "code",
|
| 285 |
+
"execution_count": 12,
|
| 286 |
+
"id": "322a4619",
|
| 287 |
+
"metadata": {},
|
| 288 |
+
"outputs": [],
|
| 289 |
+
"source": [
|
| 290 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 291 |
+
"def encode(batch):\n",
|
| 292 |
+
" # Not sure if we should `replicate` params, does not seem to have any effect\n",
|
| 293 |
+
" _, indices = model.encode(batch)\n",
|
| 294 |
+
" return indices"
|
| 295 |
+
]
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"cell_type": "markdown",
|
| 299 |
+
"id": "14375a41",
|
| 300 |
+
"metadata": {},
|
| 301 |
+
"source": [
|
| 302 |
+
"### Encoding loop"
|
| 303 |
+
]
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"cell_type": "code",
|
| 307 |
+
"execution_count": 13,
|
| 308 |
+
"id": "ff6c10d4",
|
| 309 |
+
"metadata": {},
|
| 310 |
+
"outputs": [],
|
| 311 |
+
"source": [
|
| 312 |
+
"import os\n",
|
| 313 |
+
"import pandas as pd\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"def encode_captioned_dataset(dataloader, output_dir, save_every=14):\n",
|
| 316 |
+
" output_dir.mkdir(parents=True, exist_ok=True)\n",
|
| 317 |
+
"\n",
|
| 318 |
+
" # Saving strategy:\n",
|
| 319 |
+
" # - Create a new file every so often to prevent excessive file seeking.\n",
|
| 320 |
+
" # - Save each batch after processing.\n",
|
| 321 |
+
" # - Keep the file open until we are done with it.\n",
|
| 322 |
+
" file = None \n",
|
| 323 |
+
" for n, (urls, images, captions) in enumerate(tqdm(dataloader)):\n",
|
| 324 |
+
" if (n % save_every == 0):\n",
|
| 325 |
+
" if file is not None:\n",
|
| 326 |
+
" file.close()\n",
|
| 327 |
+
" split_num = n // save_every\n",
|
| 328 |
+
" file = open(output_dir/f'split_{split_num:05x}.jsonl', 'w')\n",
|
| 329 |
+
"\n",
|
| 330 |
+
" images = shard(images.numpy().squeeze())\n",
|
| 331 |
+
" encoded = encode(images)\n",
|
| 332 |
+
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
|
| 333 |
+
"\n",
|
| 334 |
+
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
|
| 335 |
+
" batch_df = pd.DataFrame.from_dict({\"url\": urls, \"caption\": captions, \"encoding\": encoded_as_string})\n",
|
| 336 |
+
" batch_df.to_json(file, orient='records', lines=True)"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "markdown",
|
| 341 |
+
"id": "09ff75a3",
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"source": [
|
| 344 |
+
"Create a new file every 318 iterations. This should produce splits of ~500 MB each, when using a total batch size of 1024."
|
| 345 |
+
]
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"cell_type": "code",
|
| 349 |
+
"execution_count": 14,
|
| 350 |
+
"id": "96222bb4",
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"save_every = 318"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "code",
|
| 359 |
+
"execution_count": null,
|
| 360 |
+
"id": "7704863d",
|
| 361 |
+
"metadata": {},
|
| 362 |
+
"outputs": [
|
| 363 |
+
{
|
| 364 |
+
"name": "stderr",
|
| 365 |
+
"output_type": "stream",
|
| 366 |
+
"text": [
|
| 367 |
+
" 2%|█▌ | 1085/43663 [31:58<20:43:42, 1.75s/it]"
|
| 368 |
+
]
|
| 369 |
+
}
|
| 370 |
+
],
|
| 371 |
+
"source": [
|
| 372 |
+
"encode_captioned_dataset(dl, encoded_output, save_every=save_every)"
|
| 373 |
+
]
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"cell_type": "markdown",
|
| 377 |
+
"id": "8953dd84",
|
| 378 |
+
"metadata": {},
|
| 379 |
+
"source": [
|
| 380 |
+
"----"
|
| 381 |
+
]
|
| 382 |
+
}
|
| 383 |
+
],
|
| 384 |
+
"metadata": {
|
| 385 |
+
"interpreter": {
|
| 386 |
+
"hash": "db471c52d602b4f5f40ecaf278e88ccfef85c29d0a1a07185b0d51fc7acf4e26"
|
| 387 |
+
},
|
| 388 |
+
"kernelspec": {
|
| 389 |
+
"display_name": "Python 3 (ipykernel)",
|
| 390 |
+
"language": "python",
|
| 391 |
+
"name": "python3"
|
| 392 |
+
},
|
| 393 |
+
"language_info": {
|
| 394 |
+
"codemirror_mode": {
|
| 395 |
+
"name": "ipython",
|
| 396 |
+
"version": 3
|
| 397 |
+
},
|
| 398 |
+
"file_extension": ".py",
|
| 399 |
+
"mimetype": "text/x-python",
|
| 400 |
+
"name": "python",
|
| 401 |
+
"nbconvert_exporter": "python",
|
| 402 |
+
"pygments_lexer": "ipython3",
|
| 403 |
+
"version": "3.8.10"
|
| 404 |
+
}
|
| 405 |
+
},
|
| 406 |
+
"nbformat": 4,
|
| 407 |
+
"nbformat_minor": 5
|
| 408 |
+
}
|