Spaces:
Running
Running
refactor: captioned_strip used only in gradio
Browse files- app/gradio/app_gradio.py +67 -28
- dalle_mini/helpers.py +0 -14
app/gradio/app_gradio.py
CHANGED
|
@@ -2,21 +2,20 @@
|
|
| 2 |
# coding: utf-8
|
| 3 |
|
| 4 |
# Uncomment to run on cpu
|
| 5 |
-
#import os
|
| 6 |
-
#os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
| 7 |
|
| 8 |
import random
|
| 9 |
|
| 10 |
import jax
|
| 11 |
import flax.linen as nn
|
| 12 |
from flax.training.common_utils import shard
|
| 13 |
-
from flax.jax_utils import replicate
|
| 14 |
|
| 15 |
-
from transformers import BartTokenizer
|
| 16 |
|
| 17 |
-
from PIL import Image
|
| 18 |
import numpy as np
|
| 19 |
-
import matplotlib.pyplot as plt
|
| 20 |
|
| 21 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 22 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
|
@@ -26,27 +25,47 @@ from transformers import CLIPProcessor, FlaxCLIPModel
|
|
| 26 |
|
| 27 |
import gradio as gr
|
| 28 |
|
| 29 |
-
from
|
| 30 |
|
| 31 |
|
| 32 |
-
DALLE_REPO =
|
| 33 |
-
DALLE_COMMIT_ID =
|
| 34 |
|
| 35 |
-
VQGAN_REPO =
|
| 36 |
-
VQGAN_COMMIT_ID =
|
| 37 |
|
| 38 |
tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
|
| 39 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(
|
|
|
|
|
|
|
| 40 |
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
def custom_to_pil(x):
|
| 43 |
-
x = np.clip(x, 0
|
| 44 |
-
x = (255*x).astype(np.uint8)
|
| 45 |
x = Image.fromarray(x)
|
| 46 |
if not x.mode == "RGB":
|
| 47 |
x = x.convert("RGB")
|
| 48 |
return x
|
| 49 |
|
|
|
|
| 50 |
def generate(input, rng, params):
|
| 51 |
return model.generate(
|
| 52 |
**input,
|
|
@@ -59,9 +78,11 @@ def generate(input, rng, params):
|
|
| 59 |
params=params,
|
| 60 |
)
|
| 61 |
|
|
|
|
| 62 |
def get_images(indices, params):
|
| 63 |
return vqgan.decode_code(indices, params=params)
|
| 64 |
|
|
|
|
| 65 |
p_generate = jax.pmap(generate, "batch")
|
| 66 |
p_get_images = jax.pmap(get_images, "batch")
|
| 67 |
|
|
@@ -73,9 +94,16 @@ print("Initialize FlaxCLIPModel")
|
|
| 73 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 74 |
print("Initialize CLIPProcessor")
|
| 75 |
|
|
|
|
| 76 |
def hallucinate(prompt, num_images=64):
|
| 77 |
prompt = [prompt] * jax.device_count()
|
| 78 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
inputs = shard(inputs)
|
| 80 |
|
| 81 |
all_images = []
|
|
@@ -92,6 +120,7 @@ def hallucinate(prompt, num_images=64):
|
|
| 92 |
all_images.append(custom_to_pil(image))
|
| 93 |
return all_images
|
| 94 |
|
|
|
|
| 95 |
def clip_top_k(prompt, images, k=8):
|
| 96 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
| 97 |
outputs = clip(**inputs)
|
|
@@ -99,24 +128,29 @@ def clip_top_k(prompt, images, k=8):
|
|
| 99 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
| 100 |
return [images[score] for score in scores]
|
| 101 |
|
|
|
|
| 102 |
def compose_predictions(images, caption=None):
|
| 103 |
increased_h = 0 if caption is None else 48
|
| 104 |
w, h = images[0].size[0], images[0].size[1]
|
| 105 |
-
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
| 106 |
for i, img_ in enumerate(images):
|
| 107 |
-
img.paste(img_, (i*w, increased_h))
|
| 108 |
|
| 109 |
if caption is not None:
|
| 110 |
draw = ImageDraw.Draw(img)
|
| 111 |
-
font = ImageFont.truetype(
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
return img
|
| 114 |
|
|
|
|
| 115 |
def top_k_predictions(prompt, num_candidates=32, k=8):
|
| 116 |
images = hallucinate(prompt, num_images=num_candidates)
|
| 117 |
images = clip_top_k(prompt, images, k=k)
|
| 118 |
return images
|
| 119 |
|
|
|
|
| 120 |
def run_inference(prompt, num_images=32, num_preds=8):
|
| 121 |
images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
|
| 122 |
predictions = captioned_strip(images)
|
|
@@ -125,23 +159,28 @@ def run_inference(prompt, num_images=32, num_preds=8):
|
|
| 125 |
"""
|
| 126 |
return (output_title, predictions)
|
| 127 |
|
|
|
|
| 128 |
outputs = [
|
| 129 |
-
gr.outputs.HTML(label=""),
|
| 130 |
-
gr.outputs.Image(label=
|
| 131 |
]
|
| 132 |
|
| 133 |
description = """
|
| 134 |
DALL·E-mini is an AI model that generates images from any prompt you give! Generate images from text:
|
| 135 |
"""
|
| 136 |
-
gr.Interface(
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
| 140 |
description=description,
|
| 141 |
article="<p style='text-align: center'> Created by Boris Dayma et al. 2021 | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a> | <a href='https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA'>Report</a></p>",
|
| 142 |
-
layout=
|
| 143 |
-
theme=
|
| 144 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
| 145 |
allow_flagging=False,
|
| 146 |
live=False,
|
| 147 |
# server_port=8999
|
|
|
|
| 2 |
# coding: utf-8
|
| 3 |
|
| 4 |
# Uncomment to run on cpu
|
| 5 |
+
# import os
|
| 6 |
+
# os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
| 7 |
|
| 8 |
import random
|
| 9 |
|
| 10 |
import jax
|
| 11 |
import flax.linen as nn
|
| 12 |
from flax.training.common_utils import shard
|
| 13 |
+
from flax.jax_utils import replicate
|
| 14 |
|
| 15 |
+
from transformers import BartTokenizer
|
| 16 |
|
| 17 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 18 |
import numpy as np
|
|
|
|
| 19 |
|
| 20 |
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 21 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
|
|
|
| 25 |
|
| 26 |
import gradio as gr
|
| 27 |
|
| 28 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 29 |
|
| 30 |
|
| 31 |
+
DALLE_REPO = "flax-community/dalle-mini"
|
| 32 |
+
DALLE_COMMIT_ID = "4d34126d0df8bc4a692ae933e3b902a1fa8b6114"
|
| 33 |
|
| 34 |
+
VQGAN_REPO = "flax-community/vqgan_f16_16384"
|
| 35 |
+
VQGAN_COMMIT_ID = "90cc46addd2dd8f5be21586a9a23e1b95aa506a9"
|
| 36 |
|
| 37 |
tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
|
| 38 |
+
model = CustomFlaxBartForConditionalGeneration.from_pretrained(
|
| 39 |
+
DALLE_REPO, revision=DALLE_COMMIT_ID
|
| 40 |
+
)
|
| 41 |
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
|
| 42 |
|
| 43 |
+
|
| 44 |
+
def captioned_strip(images, caption=None, rows=1):
|
| 45 |
+
increased_h = 0 if caption is None else 48
|
| 46 |
+
w, h = images[0].size[0], images[0].size[1]
|
| 47 |
+
img = Image.new("RGB", (len(images) * w // rows, h * rows + increased_h))
|
| 48 |
+
for i, img_ in enumerate(images):
|
| 49 |
+
img.paste(img_, (i // rows * w, increased_h + (i % rows) * h))
|
| 50 |
+
|
| 51 |
+
if caption is not None:
|
| 52 |
+
draw = ImageDraw.Draw(img)
|
| 53 |
+
font = ImageFont.truetype(
|
| 54 |
+
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
|
| 55 |
+
)
|
| 56 |
+
draw.text((20, 3), caption, (255, 255, 255), font=font)
|
| 57 |
+
return img
|
| 58 |
+
|
| 59 |
+
|
| 60 |
def custom_to_pil(x):
|
| 61 |
+
x = np.clip(x, 0.0, 1.0)
|
| 62 |
+
x = (255 * x).astype(np.uint8)
|
| 63 |
x = Image.fromarray(x)
|
| 64 |
if not x.mode == "RGB":
|
| 65 |
x = x.convert("RGB")
|
| 66 |
return x
|
| 67 |
|
| 68 |
+
|
| 69 |
def generate(input, rng, params):
|
| 70 |
return model.generate(
|
| 71 |
**input,
|
|
|
|
| 78 |
params=params,
|
| 79 |
)
|
| 80 |
|
| 81 |
+
|
| 82 |
def get_images(indices, params):
|
| 83 |
return vqgan.decode_code(indices, params=params)
|
| 84 |
|
| 85 |
+
|
| 86 |
p_generate = jax.pmap(generate, "batch")
|
| 87 |
p_get_images = jax.pmap(get_images, "batch")
|
| 88 |
|
|
|
|
| 94 |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 95 |
print("Initialize CLIPProcessor")
|
| 96 |
|
| 97 |
+
|
| 98 |
def hallucinate(prompt, num_images=64):
|
| 99 |
prompt = [prompt] * jax.device_count()
|
| 100 |
+
inputs = tokenizer(
|
| 101 |
+
prompt,
|
| 102 |
+
return_tensors="jax",
|
| 103 |
+
padding="max_length",
|
| 104 |
+
truncation=True,
|
| 105 |
+
max_length=128,
|
| 106 |
+
).data
|
| 107 |
inputs = shard(inputs)
|
| 108 |
|
| 109 |
all_images = []
|
|
|
|
| 120 |
all_images.append(custom_to_pil(image))
|
| 121 |
return all_images
|
| 122 |
|
| 123 |
+
|
| 124 |
def clip_top_k(prompt, images, k=8):
|
| 125 |
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
| 126 |
outputs = clip(**inputs)
|
|
|
|
| 128 |
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
| 129 |
return [images[score] for score in scores]
|
| 130 |
|
| 131 |
+
|
| 132 |
def compose_predictions(images, caption=None):
|
| 133 |
increased_h = 0 if caption is None else 48
|
| 134 |
w, h = images[0].size[0], images[0].size[1]
|
| 135 |
+
img = Image.new("RGB", (len(images) * w, h + increased_h))
|
| 136 |
for i, img_ in enumerate(images):
|
| 137 |
+
img.paste(img_, (i * w, increased_h))
|
| 138 |
|
| 139 |
if caption is not None:
|
| 140 |
draw = ImageDraw.Draw(img)
|
| 141 |
+
font = ImageFont.truetype(
|
| 142 |
+
"/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40
|
| 143 |
+
)
|
| 144 |
+
draw.text((20, 3), caption, (255, 255, 255), font=font)
|
| 145 |
return img
|
| 146 |
|
| 147 |
+
|
| 148 |
def top_k_predictions(prompt, num_candidates=32, k=8):
|
| 149 |
images = hallucinate(prompt, num_images=num_candidates)
|
| 150 |
images = clip_top_k(prompt, images, k=k)
|
| 151 |
return images
|
| 152 |
|
| 153 |
+
|
| 154 |
def run_inference(prompt, num_images=32, num_preds=8):
|
| 155 |
images = top_k_predictions(prompt, num_candidates=num_images, k=num_preds)
|
| 156 |
predictions = captioned_strip(images)
|
|
|
|
| 159 |
"""
|
| 160 |
return (output_title, predictions)
|
| 161 |
|
| 162 |
+
|
| 163 |
outputs = [
|
| 164 |
+
gr.outputs.HTML(label=""), # To be used as title
|
| 165 |
+
gr.outputs.Image(label=""),
|
| 166 |
]
|
| 167 |
|
| 168 |
description = """
|
| 169 |
DALL·E-mini is an AI model that generates images from any prompt you give! Generate images from text:
|
| 170 |
"""
|
| 171 |
+
gr.Interface(
|
| 172 |
+
run_inference,
|
| 173 |
+
inputs=[gr.inputs.Textbox(label="What do you want to see?")],
|
| 174 |
+
outputs=outputs,
|
| 175 |
+
title="DALL·E mini",
|
| 176 |
description=description,
|
| 177 |
article="<p style='text-align: center'> Created by Boris Dayma et al. 2021 | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a> | <a href='https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA'>Report</a></p>",
|
| 178 |
+
layout="vertical",
|
| 179 |
+
theme="huggingface",
|
| 180 |
+
examples=[
|
| 181 |
+
["an armchair in the shape of an avocado"],
|
| 182 |
+
["snowy mountains by the sea"],
|
| 183 |
+
],
|
| 184 |
allow_flagging=False,
|
| 185 |
live=False,
|
| 186 |
# server_port=8999
|
dalle_mini/helpers.py
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 2 |
-
|
| 3 |
-
def captioned_strip(images, caption=None, rows=1):
|
| 4 |
-
increased_h = 0 if caption is None else 48
|
| 5 |
-
w, h = images[0].size[0], images[0].size[1]
|
| 6 |
-
img = Image.new("RGB", (len(images)*w//rows, h*rows + increased_h))
|
| 7 |
-
for i, img_ in enumerate(images):
|
| 8 |
-
img.paste(img_, (i//rows*w, increased_h + (i % rows) * h))
|
| 9 |
-
|
| 10 |
-
if caption is not None:
|
| 11 |
-
draw = ImageDraw.Draw(img)
|
| 12 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
| 13 |
-
draw.text((20, 3), caption, (255,255,255), font=font)
|
| 14 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|