Spaces:
Running
Running
feat(train) - handle multiple nodes (#130)
Browse files- src/dalle_mini/data.py +1 -1
- tools/train/train.py +69 -54
src/dalle_mini/data.py
CHANGED
@@ -94,7 +94,7 @@ class Dataset:
|
|
94 |
if self.streaming:
|
95 |
# we need to shuffle early in streaming mode
|
96 |
if hasattr(self, "train_dataset"):
|
97 |
-
self.train_dataset = self.train_dataset.shuffle(
|
98 |
else:
|
99 |
# prepare rng for later shuffling
|
100 |
if self.seed_dataset is None:
|
|
|
94 |
if self.streaming:
|
95 |
# we need to shuffle early in streaming mode
|
96 |
if hasattr(self, "train_dataset"):
|
97 |
+
self.train_dataset = self.train_dataset.shuffle(5000, self.seed_dataset)
|
98 |
else:
|
99 |
# prepare rng for later shuffling
|
100 |
if self.seed_dataset is None:
|
tools/train/train.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding=utf-8
|
3 |
-
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
@@ -14,7 +14,7 @@
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
"""
|
17 |
-
|
18 |
Script adapted from run_summarization_flax.py
|
19 |
"""
|
20 |
|
@@ -527,23 +527,29 @@ def main():
|
|
527 |
dataset.preprocess(tokenizer=tokenizer, config=model.config)
|
528 |
|
529 |
# Initialize our training
|
530 |
-
|
531 |
-
rng, dropout_rng = jax.random.split(rng)
|
532 |
|
533 |
# Store some constant
|
534 |
num_epochs = training_args.num_train_epochs
|
535 |
# batch size
|
536 |
-
|
537 |
-
training_args.per_device_train_batch_size
|
|
|
|
|
|
|
|
|
|
|
538 |
)
|
539 |
-
batch_size_per_node = minibatch_size * training_args.gradient_accumulation_steps
|
540 |
batch_size_per_step = batch_size_per_node * jax.process_count()
|
541 |
-
|
542 |
-
training_args.per_device_eval_batch_size
|
|
|
|
|
543 |
)
|
|
|
544 |
len_train_dataset, len_eval_dataset = dataset.length
|
545 |
steps_per_epoch = (
|
546 |
-
len_train_dataset //
|
547 |
if len_train_dataset is not None
|
548 |
else None
|
549 |
)
|
@@ -763,13 +769,21 @@ def main():
|
|
763 |
|
764 |
# Define gradient update step fn
|
765 |
def train_step(state, batch, delta_time):
|
766 |
-
#
|
767 |
-
#
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
|
774 |
# get a minibatch (one gradient accumulation slice)
|
775 |
def get_minibatch(batch, grad_idx):
|
@@ -791,54 +805,45 @@ def main():
|
|
791 |
def loss_and_grad(grad_idx, dropout_rng):
|
792 |
# minibatch at grad_idx, shape (dp_devices, per_device_train_batch_size, ...)
|
793 |
minibatch = get_minibatch(batch, grad_idx)
|
794 |
-
#
|
|
|
|
|
795 |
minibatch = jax.tree_map(
|
796 |
-
lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
|
|
|
797 |
)
|
798 |
-
#
|
799 |
loss_grads = jax.vmap(grad_fn, in_axes=(None, 0, None), out_axes=(0, 0))(
|
800 |
state.params, minibatch, dropout_rng
|
801 |
)
|
802 |
-
# ensure
|
803 |
loss_grads = jax.tree_map(
|
804 |
lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
|
805 |
loss_grads,
|
806 |
)
|
807 |
-
|
808 |
# average across all devices
|
809 |
loss_grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), loss_grads)
|
810 |
-
|
811 |
# return loss and grads
|
812 |
-
return loss_grads
|
813 |
-
|
814 |
-
# create a new rng
|
815 |
-
dropout_rng, _ = jax.random.split(state.dropout_rng)
|
816 |
-
# use a different rng per node
|
817 |
-
dropout_rng = jax.random.fold_in(dropout_rng, jax.process_index())
|
818 |
|
819 |
if training_args.gradient_accumulation_steps == 1:
|
820 |
-
|
821 |
-
def batch_step(dropout_rng):
|
822 |
-
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
|
823 |
-
loss_grad = loss_and_grad(0, dropout_rng)
|
824 |
-
return loss_grad, new_dropout_rng
|
825 |
-
|
826 |
-
loss_grad, dropout_rng = batch_step(dropout_rng)
|
827 |
else:
|
828 |
-
# create initial state for
|
829 |
-
|
830 |
-
|
831 |
-
|
|
|
|
|
|
|
832 |
)
|
833 |
-
init_minibatch_step = (init_cumul_loss_grad, dropout_rng)
|
834 |
|
835 |
# accumulate gradients
|
836 |
def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout):
|
837 |
cumul_loss_grad, dropout_rng = cumul_loss_grad_dropout
|
838 |
-
|
839 |
-
loss_grad = loss_and_grad(grad_idx, dropout_rng)
|
840 |
cumul_loss_grad = jax.tree_map(jnp.add, cumul_loss_grad, loss_grad)
|
841 |
-
return cumul_loss_grad,
|
842 |
|
843 |
# loop over gradients
|
844 |
loss_grad, dropout_rng = jax.lax.fori_loop(
|
@@ -870,6 +875,20 @@ def main():
|
|
870 |
|
871 |
# Define eval fn
|
872 |
def eval_step(state, batch):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
def compute_eval_loss(batch):
|
874 |
batch, labels = batch.pop("labels")
|
875 |
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
|
@@ -936,9 +955,9 @@ def main():
|
|
936 |
def run_evaluation():
|
937 |
# ======================== Evaluating ==============================
|
938 |
if training_args.do_eval:
|
939 |
-
eval_loader = dataset.dataloader("eval",
|
940 |
eval_steps = (
|
941 |
-
len_eval_dataset //
|
942 |
if len_eval_dataset is not None
|
943 |
else None
|
944 |
)
|
@@ -950,17 +969,14 @@ def main():
|
|
950 |
leave=False,
|
951 |
total=eval_steps,
|
952 |
):
|
953 |
-
#
|
954 |
batch = jax.tree_map(
|
955 |
lambda x: x.reshape(
|
956 |
-
(
|
957 |
-
training_args.dp_devices,
|
958 |
-
training_args.per_device_eval_batch_size,
|
959 |
-
)
|
960 |
-
+ x.shape[1:]
|
961 |
),
|
962 |
batch,
|
963 |
)
|
|
|
964 |
# freeze batch to pass safely to jax transforms
|
965 |
batch = freeze(batch)
|
966 |
# accumulate losses async
|
@@ -1081,8 +1097,7 @@ def main():
|
|
1081 |
lambda x: x.reshape(
|
1082 |
(
|
1083 |
training_args.gradient_accumulation_steps,
|
1084 |
-
|
1085 |
-
training_args.per_device_train_batch_size,
|
1086 |
)
|
1087 |
+ x.shape[1:]
|
1088 |
),
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding=utf-8
|
3 |
+
# Copyright 2021-2022 The HuggingFace & DALL·E Mini Team All rights reserved.
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
|
|
14 |
# See the License for the specific language governing permissions and
|
15 |
# limitations under the License.
|
16 |
"""
|
17 |
+
Training DALL·E Mini.
|
18 |
Script adapted from run_summarization_flax.py
|
19 |
"""
|
20 |
|
|
|
527 |
dataset.preprocess(tokenizer=tokenizer, config=model.config)
|
528 |
|
529 |
# Initialize our training
|
530 |
+
dropout_rng = jax.random.PRNGKey(training_args.seed_model)
|
|
|
531 |
|
532 |
# Store some constant
|
533 |
num_epochs = training_args.num_train_epochs
|
534 |
# batch size
|
535 |
+
batch_size_per_node_per_grad_step = (
|
536 |
+
training_args.per_device_train_batch_size
|
537 |
+
* jax.local_device_count()
|
538 |
+
// training_args.mp_devices
|
539 |
+
)
|
540 |
+
batch_size_per_node = (
|
541 |
+
batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps
|
542 |
)
|
|
|
543 |
batch_size_per_step = batch_size_per_node * jax.process_count()
|
544 |
+
eval_batch_size_per_node = (
|
545 |
+
training_args.per_device_eval_batch_size
|
546 |
+
* jax.local_device_count()
|
547 |
+
// training_args.mp_devices
|
548 |
)
|
549 |
+
eval_batch_size_per_step = eval_batch_size_per_node * jax.process_count()
|
550 |
len_train_dataset, len_eval_dataset = dataset.length
|
551 |
steps_per_epoch = (
|
552 |
+
len_train_dataset // batch_size_per_step
|
553 |
if len_train_dataset is not None
|
554 |
else None
|
555 |
)
|
|
|
769 |
|
770 |
# Define gradient update step fn
|
771 |
def train_step(state, batch, delta_time):
|
772 |
+
# we reshape to (gradient_accumulation_steps, dp_devices, ...)
|
773 |
+
# allows feeding partial batch size per node for full model parallel
|
774 |
+
batch = jax.tree_map(
|
775 |
+
lambda x: x.reshape(
|
776 |
+
(
|
777 |
+
training_args.gradient_accumulation_steps,
|
778 |
+
training_args.dp_devices,
|
779 |
+
training_args.per_device_train_batch_size,
|
780 |
+
)
|
781 |
+
+ x.shape[2:]
|
782 |
+
),
|
783 |
+
batch,
|
784 |
+
)
|
785 |
+
# ensure data is sharded correctly per dp device
|
786 |
+
batch = with_sharding_constraint(batch, grad_batch_spec)
|
787 |
|
788 |
# get a minibatch (one gradient accumulation slice)
|
789 |
def get_minibatch(batch, grad_idx):
|
|
|
805 |
def loss_and_grad(grad_idx, dropout_rng):
|
806 |
# minibatch at grad_idx, shape (dp_devices, per_device_train_batch_size, ...)
|
807 |
minibatch = get_minibatch(batch, grad_idx)
|
808 |
+
# calculate loss and grads independently per dp_device
|
809 |
+
dropout_rng, _ = jax.random.split(dropout_rng)
|
810 |
+
# ensure inputs are sharded per device
|
811 |
minibatch = jax.tree_map(
|
812 |
+
lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
|
813 |
+
minibatch,
|
814 |
)
|
815 |
+
# only 1 single rng per grad step, let us handle larger batch size
|
816 |
loss_grads = jax.vmap(grad_fn, in_axes=(None, 0, None), out_axes=(0, 0))(
|
817 |
state.params, minibatch, dropout_rng
|
818 |
)
|
819 |
+
# ensure outputs are sharded per device
|
820 |
loss_grads = jax.tree_map(
|
821 |
lambda x: with_sharding_constraint(x, PartitionSpec("batch")),
|
822 |
loss_grads,
|
823 |
)
|
|
|
824 |
# average across all devices
|
825 |
loss_grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), loss_grads)
|
|
|
826 |
# return loss and grads
|
827 |
+
return loss_grads, dropout_rng
|
|
|
|
|
|
|
|
|
|
|
828 |
|
829 |
if training_args.gradient_accumulation_steps == 1:
|
830 |
+
loss_grad, dropout_rng = loss_and_grad(0, state.dropout_rng)
|
|
|
|
|
|
|
|
|
|
|
|
|
831 |
else:
|
832 |
+
# create initial state for cumul_minibatch_step loop
|
833 |
+
init_minibatch_step = (
|
834 |
+
(
|
835 |
+
0.0,
|
836 |
+
jax.tree_map(jnp.zeros_like, state.params),
|
837 |
+
),
|
838 |
+
state.dropout_rng,
|
839 |
)
|
|
|
840 |
|
841 |
# accumulate gradients
|
842 |
def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout):
|
843 |
cumul_loss_grad, dropout_rng = cumul_loss_grad_dropout
|
844 |
+
loss_grad, dropout_rng = loss_and_grad(grad_idx, dropout_rng)
|
|
|
845 |
cumul_loss_grad = jax.tree_map(jnp.add, cumul_loss_grad, loss_grad)
|
846 |
+
return cumul_loss_grad, dropout_rng
|
847 |
|
848 |
# loop over gradients
|
849 |
loss_grad, dropout_rng = jax.lax.fori_loop(
|
|
|
875 |
|
876 |
# Define eval fn
|
877 |
def eval_step(state, batch):
|
878 |
+
# we reshape to (dp_devices, ...)
|
879 |
+
batch = jax.tree_map(
|
880 |
+
lambda x: x.reshape(
|
881 |
+
(
|
882 |
+
training_args.dp_devices,
|
883 |
+
training_args.per_device_eval_batch_size,
|
884 |
+
)
|
885 |
+
+ x.shape[1:]
|
886 |
+
),
|
887 |
+
batch,
|
888 |
+
)
|
889 |
+
# ensure data is sharded correctly per dp device
|
890 |
+
batch = with_sharding_constraint(batch, batch_spec)
|
891 |
+
|
892 |
def compute_eval_loss(batch):
|
893 |
batch, labels = batch.pop("labels")
|
894 |
logits = state.apply_fn(**batch, params=state.params, train=False)[0]
|
|
|
955 |
def run_evaluation():
|
956 |
# ======================== Evaluating ==============================
|
957 |
if training_args.do_eval:
|
958 |
+
eval_loader = dataset.dataloader("eval", eval_batch_size_per_step)
|
959 |
eval_steps = (
|
960 |
+
len_eval_dataset // eval_batch_size_per_step
|
961 |
if len_eval_dataset is not None
|
962 |
else None
|
963 |
)
|
|
|
969 |
leave=False,
|
970 |
total=eval_steps,
|
971 |
):
|
972 |
+
# need to keep only eval_batch_size_per_node items relevant to the node
|
973 |
batch = jax.tree_map(
|
974 |
lambda x: x.reshape(
|
975 |
+
(jax.process_count(), eval_batch_size_per_node) + x.shape[1:]
|
|
|
|
|
|
|
|
|
976 |
),
|
977 |
batch,
|
978 |
)
|
979 |
+
batch = jax.tree_map(lambda x: x[jax.process_index()], batch)
|
980 |
# freeze batch to pass safely to jax transforms
|
981 |
batch = freeze(batch)
|
982 |
# accumulate losses async
|
|
|
1097 |
lambda x: x.reshape(
|
1098 |
(
|
1099 |
training_args.gradient_accumulation_steps,
|
1100 |
+
batch_size_per_node_per_grad_step,
|
|
|
1101 |
)
|
1102 |
+ x.shape[1:]
|
1103 |
),
|