Spaces:
Running
Running
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for seq2seq, text to image. | |
| Script adapted from run_summarization_flax.py | |
| """ | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
| import os | |
| import logging as pylogging # To avoid collision with transformers.utils.logging | |
| import sys | |
| from dataclasses import dataclass, field | |
| from functools import partial | |
| from pathlib import Path | |
| from typing import Callable, Optional | |
| import json | |
| import datasets | |
| import numpy as np | |
| from datasets import Dataset, load_dataset, load_metric | |
| from tqdm import tqdm | |
| import jax | |
| import jax.numpy as jnp | |
| import optax | |
| import transformers | |
| from filelock import FileLock | |
| from flax import jax_utils, traverse_util | |
| from flax.serialization import from_bytes, to_bytes | |
| import flax.linen as nn | |
| from flax.jax_utils import unreplicate | |
| from flax.training import train_state | |
| from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
| from transformers import ( | |
| FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| AutoTokenizer, | |
| FlaxAutoModelForSeq2SeqLM, | |
| FlaxBartForConditionalGeneration, | |
| HfArgumentParser, | |
| TrainingArguments, | |
| ) | |
| from transformers.models.bart.modeling_flax_bart import * | |
| from transformers.file_utils import is_offline_mode | |
| import wandb | |
| from dalle_mini.text import TextNormalizer | |
| logger = pylogging.getLogger(__name__) | |
| MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| # Model hyperparameters, for convenience | |
| # TODO: the model has now it's own definition file and should be imported | |
| OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos | |
| OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos | |
| BOS_TOKEN_ID = 16384 | |
| BASE_MODEL = "facebook/bart-large-cnn" # we currently have issues with bart-large | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
| """ | |
| model_name_or_path: Optional[str] = field( | |
| default=BASE_MODEL, | |
| metadata={ | |
| "help": "The model checkpoint for weights initialization." | |
| "Don't set if you want to train a model from scratch." | |
| }, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "If training from scratch, pass a model type from the list: " | |
| + ", ".join(MODEL_TYPES) | |
| }, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Pretrained config name or path if not the same as model_name" | |
| }, | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Pretrained tokenizer name or path if not the same as model_name" | |
| }, | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Where do you want to store the pretrained models downloaded from s3" | |
| }, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not." | |
| }, | |
| ) | |
| dtype: Optional[str] = field( | |
| default="float32", | |
| metadata={ | |
| "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | |
| }, | |
| ) | |
| from_checkpoint: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Loads a pretrained wandb checkpoint. Use artifact reference." | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the dataset to use (via the datasets library)."}, | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "The configuration name of the dataset to use (via the datasets library)." | |
| }, | |
| ) | |
| text_column: Optional[str] = field( | |
| default="caption", | |
| metadata={ | |
| "help": "The name of the column in the datasets containing the full texts (for summarization)." | |
| }, | |
| ) | |
| encoding_column: Optional[str] = field( | |
| default="encoding", | |
| metadata={ | |
| "help": "The name of the column in the datasets containing the image encodings." | |
| }, | |
| ) | |
| dataset_repo_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The dataset repository containing encoded files."}, | |
| ) | |
| train_file: Optional[str] = field( | |
| default=None, metadata={"help": "The input training data file (a text file)."} | |
| ) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "An optional input evaluation data file to evaluate the perplexity on (a text file)." | |
| }, | |
| ) | |
| streaming: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to stream the dataset."}, | |
| ) | |
| len_train: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Length of training dataset, required for streaming"}, | |
| ) | |
| len_eval: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Length of validation dataset, required for streaming"}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| }, | |
| ) | |
| no_decay: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to use decay in the learning rate scheduler."}, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=OUTPUT_LENGTH, | |
| metadata={ | |
| "help": "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=OUTPUT_LENGTH, | |
| metadata={ | |
| "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
| "This argument is also used to override the `max_length` param of `model.generate`, which is used " | |
| "during evaluation." | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| }, | |
| ) | |
| normalize_text: bool = field( | |
| default=False, | |
| metadata={"help": "Normalize/Simplify text"}, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=80, # ensure we have the same datasets cached data and avoid using too much space | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| source_prefix: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "A prefix to add before every source text (useful for T5 models)." | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, | |
| metadata={"help": "Overwrite the cached training and evaluation sets"}, | |
| ) | |
| log_interval: Optional[int] = field( | |
| default=40, | |
| metadata={"help": "Log frequency for metrics"}, | |
| ) | |
| log_model: bool = field( | |
| default=False, | |
| metadata={"help": "Overwrite the cached training and evaluation sets"}, | |
| ) | |
| save_model_steps: Optional[int] = field( | |
| default=3000, # about once every hour in our experiments | |
| metadata={ | |
| "help": "For logging the model more frequently. Used only when `log_model` is set." | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| ): | |
| raise ValueError( | |
| "Need either a dataset name or a training/validation file." | |
| ) | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in [ | |
| "tsv", | |
| "csv", | |
| "json", | |
| "jsonl", | |
| ], "`train_file` should be a tsv, csv or json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in [ | |
| "tsv", | |
| "csv", | |
| "json", | |
| "jsonl", | |
| ], "`validation_file` should be a tsv, csv or json file." | |
| if self.val_max_target_length is None: | |
| self.val_max_target_length = self.max_target_length | |
| class TrainState(train_state.TrainState): | |
| dropout_rng: jnp.ndarray | |
| grad_accum: jnp.ndarray | |
| optimizer_step: int | |
| def replicate(self): | |
| return jax_utils.replicate(self).replace( | |
| dropout_rng=shard_prng_key(self.dropout_rng) | |
| ) | |
| class CustomFlaxBartModule(FlaxBartModule): | |
| def setup(self): | |
| # check config is valid, otherwise set default values | |
| self.config.vocab_size_output = getattr( | |
| self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE | |
| ) | |
| self.config.max_position_embeddings_decoder = getattr( | |
| self.config, "max_position_embeddings_decoder", OUTPUT_LENGTH | |
| ) | |
| # we keep shared to easily load pre-trained weights | |
| self.shared = nn.Embed( | |
| self.config.vocab_size, | |
| self.config.d_model, | |
| embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
| dtype=self.dtype, | |
| ) | |
| # a separate embedding is used for the decoder | |
| self.decoder_embed = nn.Embed( | |
| self.config.vocab_size_output, | |
| self.config.d_model, | |
| embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
| dtype=self.dtype, | |
| ) | |
| self.encoder = FlaxBartEncoder( | |
| self.config, dtype=self.dtype, embed_tokens=self.shared | |
| ) | |
| # the decoder has a different config | |
| decoder_config = BartConfig(self.config.to_dict()) | |
| decoder_config.max_position_embeddings = ( | |
| self.config.max_position_embeddings_decoder | |
| ) | |
| decoder_config.vocab_size = self.config.vocab_size_output | |
| self.decoder = FlaxBartDecoder( | |
| decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed | |
| ) | |
| class CustomFlaxBartForConditionalGenerationModule( | |
| FlaxBartForConditionalGenerationModule | |
| ): | |
| def setup(self): | |
| # check config is valid, otherwise set default values | |
| self.config.vocab_size_output = getattr( | |
| self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE | |
| ) | |
| self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype) | |
| self.lm_head = nn.Dense( | |
| self.config.vocab_size_output, | |
| use_bias=False, | |
| dtype=self.dtype, | |
| kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
| ) | |
| self.final_logits_bias = self.param( | |
| "final_logits_bias", self.bias_init, (1, self.config.vocab_size_output) | |
| ) | |
| class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration): | |
| module_class = CustomFlaxBartForConditionalGenerationModule | |
| def data_loader( | |
| rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False | |
| ): | |
| """ | |
| Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. | |
| Shuffle batches if `shuffle` is `True`. | |
| """ | |
| steps_per_epoch = len(dataset) // batch_size | |
| if shuffle: | |
| batch_idx = jax.random.permutation(rng, len(dataset)) | |
| else: | |
| batch_idx = jnp.arange(len(dataset)) | |
| batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
| batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) | |
| for idx in batch_idx: | |
| batch = dataset[idx] | |
| batch = {k: jnp.array(v) for k, v in batch.items()} | |
| batch = shard(batch) | |
| yield batch | |
| def data_loader_streaming(dataset: Dataset, batch_size: int): | |
| keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"] | |
| batch = {k: [] for k in keys} | |
| for item in dataset: | |
| for k, v in item.items(): | |
| batch[k].append(v) | |
| if len(batch[keys[0]]) == batch_size: | |
| batch = {k: jnp.array(v) for k, v in batch.items()} | |
| batch = shard(batch) | |
| yield batch | |
| batch = {k: [] for k in keys} | |
| def create_learning_rate_fn( | |
| train_ds_size: int, | |
| train_batch_size: int, | |
| num_train_epochs: int, | |
| num_warmup_steps: int, | |
| learning_rate: float, | |
| no_decay: bool, | |
| ) -> Callable[[int], jnp.array]: | |
| """Returns a linear warmup, linear_decay learning rate function.""" | |
| steps_per_epoch = train_ds_size // train_batch_size | |
| num_train_steps = steps_per_epoch * num_train_epochs | |
| warmup_fn = optax.linear_schedule( | |
| init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps | |
| ) | |
| if no_decay: | |
| return warmup_fn | |
| decay_fn = optax.linear_schedule( | |
| init_value=learning_rate, | |
| end_value=0, | |
| transition_steps=num_train_steps - num_warmup_steps, | |
| ) | |
| schedule_fn = optax.join_schedules( | |
| schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps] | |
| ) | |
| return schedule_fn | |
| def wandb_log(metrics, step=None, prefix=None): | |
| if jax.process_index() == 0: | |
| log_metrics = { | |
| f"{prefix}/{k}" if prefix is not None else k: jax.device_get(v) | |
| for k, v in metrics.items() | |
| } | |
| if step is not None: | |
| log_metrics["train/step"] = step | |
| wandb.log(log_metrics) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser( | |
| (ModelArguments, DataTrainingArguments, TrainingArguments) | |
| ) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file( | |
| json_file=os.path.abspath(sys.argv[1]) | |
| ) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if ( | |
| os.path.exists(training_args.output_dir) | |
| and os.listdir(training_args.output_dir) | |
| and training_args.do_train | |
| and not training_args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| # Set up wandb run | |
| wandb.init( | |
| entity="dalle-mini", | |
| project="dalle-mini", | |
| job_type="Seq2Seq", | |
| config=parser.parse_args(), | |
| ) | |
| # set default x-axis as 'train/step' | |
| wandb.define_metric("train/step") | |
| wandb.define_metric("*", step_metric="train/step") | |
| # Make one log on every process with the configuration for debugging. | |
| pylogging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=pylogging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR) | |
| if jax.process_index() == 0: | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| transformers.utils.logging.set_verbosity_error() | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| data_files = { | |
| "train": data_args.train_file, | |
| "validation": data_args.validation_file, | |
| } | |
| dataset = load_dataset( | |
| data_args.dataset_repo_or_path, data_files=data_files, streaming=True | |
| ) | |
| # Set up items to load or create | |
| tokenizer = None | |
| artifact_dir = None | |
| def restore_state(state, artifact_dir): | |
| # restore optimizer state | |
| with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f: | |
| opt_state = from_bytes(state.opt_state, f.read()) | |
| # restore steps | |
| with (Path(artifact_dir) / "training_state.json").open("r") as f: | |
| training_state = json.load(f) | |
| step = training_state["step"] | |
| optimizer_step = step // training_args.gradient_accumulation_steps | |
| return step, optimizer_step, opt_state | |
| if model_args.from_checkpoint is not None: | |
| artifact = wandb.run.use_artifact(model_args.from_checkpoint) | |
| artifact_dir = artifact.download() | |
| model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir) | |
| # some models will try to change bos (because of force_bos_token_to_be_generated) | |
| # we ensure bos and eos are not forced | |
| model.config.force_bos_token_to_be_generated = False | |
| model.config.forced_bos_token_id = None | |
| model.config.forced_eos_token_id = None | |
| # used in the preprocessing function | |
| config = model.config | |
| # load tokenizer if present | |
| if (Path(artifact_dir) / "tokenizer_config.json").exists(): | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| ) | |
| else: | |
| base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| ) | |
| # Set up our new model config | |
| config = BartConfig.from_pretrained(model_args.model_name_or_path) | |
| config.tie_word_embeddings = False | |
| config.decoder_start_token_id = BOS_TOKEN_ID # for first token | |
| config.bos_token_id = ( | |
| BOS_TOKEN_ID # should not be used (due to forced_bos_token_id) | |
| ) | |
| config.pos_token_id = ( | |
| BOS_TOKEN_ID # should not be needed (as we generate until max_length) | |
| ) | |
| config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable | |
| config.forced_bos_token_id = None # we don't need this token | |
| config.forced_eos_token_id = None # we don't need this token | |
| config.force_bos_token_to_be_generated = ( | |
| False # otherwise it sets bos_token_id at loading | |
| ) | |
| config.min_length = data_args.max_target_length | |
| config.max_length = data_args.max_target_length | |
| # Create a custom model and initialize it randomly | |
| model = CustomFlaxBartForConditionalGeneration( | |
| config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
| ) | |
| # Use pre-trained weights for encoder | |
| model.params["model"]["encoder"] = base_model.params["model"]["encoder"] | |
| model.params["model"]["shared"] = base_model.params["model"]["shared"] | |
| del base_model | |
| # Load tokenizer if it has not been set | |
| if tokenizer is None: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| ) | |
| print(f"TPUs: {jax.device_count()}") | |
| assert jax.device_count() == 8, "TPUs in use, please check running processes" | |
| prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| # Get the column names for input/target. | |
| text_column = data_args.text_column | |
| encoding_column = data_args.encoding_column | |
| def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): | |
| """ | |
| Shift input ids one token to the right. | |
| """ | |
| shifted_input_ids = np.zeros(input_ids.shape) | |
| shifted_input_ids[:, 1:] = input_ids[:, :-1] | |
| shifted_input_ids[:, 0] = decoder_start_token_id | |
| return shifted_input_ids | |
| text_normalizer = TextNormalizer() if data_args.normalize_text else None | |
| def normalize_text(example): | |
| example[text_column] = text_normalizer(example[text_column]) | |
| return example | |
| def preprocess_function(examples): | |
| inputs = examples[text_column] | |
| inputs = [prefix + inp for inp in inputs] if prefix else inputs | |
| # Setting padding="max_length" as we need fixed length inputs for jitted functions | |
| model_inputs = tokenizer( | |
| inputs, | |
| max_length=data_args.max_source_length, | |
| padding="max_length", | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| # set up targets | |
| # Note: labels correspond to our target indices | |
| # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token) | |
| labels = examples[encoding_column] | |
| labels = np.asarray(labels) | |
| # We need the labels, in addition to the decoder_input_ids, for the compute_loss function | |
| model_inputs["labels"] = labels | |
| # In our case, this prepends the bos token and removes the last one | |
| decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id) | |
| model_inputs["decoder_input_ids"] = decoder_input_ids | |
| return model_inputs | |
| if training_args.do_train: | |
| if "train" not in dataset: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = dataset["train"] | |
| if data_args.max_train_samples is not None: | |
| train_dataset = ( | |
| train_dataset.take(data_args.max_train_samples) | |
| if data_args.streaming | |
| else train_dataset.select(range(data_args.max_train_samples)) | |
| ) | |
| if data_args.streaming: | |
| train_dataset = train_dataset.shuffle(1000, training_args.seed) | |
| if data_args.normalize_text: | |
| train_dataset = ( | |
| train_dataset.map(text_normalizer) | |
| if data_args.streaming | |
| else train_dataset.map( | |
| normalize_text, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Normalizing the validation dataset", | |
| ) | |
| ) | |
| train_dataset = ( | |
| train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| ) | |
| if data_args.streaming | |
| else train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=train_dataset.column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| ) | |
| if training_args.do_eval: | |
| if "validation" not in dataset: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_dataset = dataset["validation"] | |
| if data_args.max_eval_samples is not None: | |
| eval_dataset = ( | |
| eval_dataset.take(data_args.max_train_samples) | |
| if data_args.streaming | |
| else eval_dataset.select(range(data_args.max_train_samples)) | |
| ) | |
| if data_args.normalize_text: | |
| eval_dataset = ( | |
| eval_dataset.map(text_normalizer) | |
| if data_args.streaming | |
| else eval_dataset.map( | |
| normalize_text, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Normalizing the validation dataset", | |
| ) | |
| ) | |
| eval_dataset = ( | |
| eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| ) | |
| if data_args.streaming | |
| else eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=eval_dataset.column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| ) | |
| # Initialize our training | |
| rng = jax.random.PRNGKey(training_args.seed) | |
| rng, dropout_rng = jax.random.split(rng) | |
| # Store some constant | |
| num_epochs = int(training_args.num_train_epochs) | |
| train_batch_size = ( | |
| int(training_args.per_device_train_batch_size) * jax.device_count() | |
| ) | |
| total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps | |
| eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | |
| if data_args.streaming: | |
| len_train_dataset = data_args.len_train | |
| if ( | |
| data_args.max_train_samples is not None | |
| and data_args.max_train_samples < len_train_dataset | |
| ): | |
| len_train_dataset = data_args.max_train_samples | |
| len_eval_dataset = data_args.len_eval | |
| if ( | |
| data_args.max_eval_samples is not None | |
| and data_args.max_eval_samples < len_eval_dataset | |
| ): | |
| len_eval_dataset = data_args.max_eval_samples | |
| else: | |
| len_train_dataset = len(train_dataset) | |
| len_eval_dataset = len(eval_dataset) | |
| steps_per_epoch = len_train_dataset // train_batch_size | |
| total_steps = steps_per_epoch * num_epochs | |
| total_optimization_steps = (len_train_dataset // total_batch_size) * num_epochs | |
| # Create learning rate schedule | |
| linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
| len_train_dataset, | |
| total_batch_size, | |
| training_args.num_train_epochs, | |
| training_args.warmup_steps, | |
| training_args.learning_rate, | |
| data_args.no_decay, | |
| ) | |
| # We use Optax's "masking" functionality to not apply weight decay | |
| # to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
| # mask boolean with the same structure as the parameters. | |
| # The mask is True for parameters that should be decayed. | |
| # Note that this mask is specifically adapted for FlaxBart. | |
| # For FlaxT5, one should correct the layer norm parameter naming | |
| # accordingly - see `run_t5_mlm_flax.py` e.g. | |
| def decay_mask_fn(params): | |
| flat_params = traverse_util.flatten_dict(params) | |
| layer_norm_params = [ | |
| (name, "scale") | |
| for name in [ | |
| "self_attn_layer_norm", | |
| "layernorm_embedding", | |
| "final_layer_norm", | |
| ] | |
| ] | |
| flat_mask = { | |
| path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) | |
| for path in flat_params | |
| } | |
| return traverse_util.unflatten_dict(flat_mask) | |
| # create adam optimizer | |
| if training_args.adafactor: | |
| # We use the default parameters here to initialize adafactor, | |
| # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 | |
| optimizer = optax.adafactor( | |
| learning_rate=linear_decay_lr_schedule_fn, | |
| ) | |
| else: | |
| optimizer = optax.adamw( | |
| learning_rate=linear_decay_lr_schedule_fn, | |
| b1=training_args.adam_beta1, | |
| b2=training_args.adam_beta2, | |
| eps=training_args.adam_epsilon, | |
| weight_decay=training_args.weight_decay, | |
| mask=decay_mask_fn, | |
| ) | |
| # Setup train state | |
| state = TrainState.create( | |
| apply_fn=model.__call__, | |
| params=model.params, | |
| tx=optimizer, | |
| dropout_rng=dropout_rng, | |
| grad_accum=jax.tree_map(jnp.zeros_like, model.params), | |
| optimizer_step=0, | |
| ) | |
| if model_args.from_checkpoint is not None: | |
| # restore optimizer state, step and optimizer_step | |
| step, optimizer_step, opt_state = restore_state(state, artifact_dir) | |
| state = state.replace( | |
| step=step, optimizer_step=optimizer_step, opt_state=opt_state | |
| ) | |
| # label smoothed cross entropy | |
| def loss_fn(logits, labels): | |
| loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) | |
| loss = loss.mean() | |
| return loss | |
| # Define gradient update step fn | |
| def train_step(state, batch): | |
| dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
| def compute_loss(params): | |
| labels = batch.pop("labels") | |
| logits = state.apply_fn( | |
| **batch, params=params, dropout_rng=dropout_rng, train=True | |
| )[0] | |
| loss = loss_fn(logits, labels) | |
| return loss | |
| grad_fn = jax.value_and_grad(compute_loss) | |
| loss, grads = grad_fn(state.params) | |
| grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum) | |
| def update_fn(): | |
| grads = jax.tree_map( | |
| lambda x: x / training_args.gradient_accumulation_steps, grad_accum | |
| ) | |
| grads = jax.lax.pmean(grads, "batch") | |
| new_state = state.apply_gradients( | |
| grads=grads, | |
| grad_accum=jax.tree_map(jnp.zeros_like, grads), | |
| optimizer_step=state.optimizer_step + 1, | |
| ) | |
| return new_state | |
| new_state = jax.lax.cond( | |
| (state.step + 1) % training_args.gradient_accumulation_steps == 0, | |
| lambda _: update_fn(), | |
| lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1), | |
| None, | |
| ) | |
| metrics = { | |
| "loss": loss, | |
| "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step), | |
| } | |
| metrics = jax.lax.pmean(metrics, axis_name="batch") | |
| return new_state.replace(dropout_rng=new_dropout_rng), metrics | |
| # Define eval fn | |
| def eval_step(params, batch): | |
| labels = batch.pop("labels") | |
| logits = model(**batch, params=params, train=False)[0] | |
| loss = loss_fn(logits, labels) | |
| # summarize metrics | |
| metrics = {"loss": loss} | |
| metrics = jax.lax.pmean(metrics, axis_name="batch") | |
| return metrics | |
| # Create parallel version of the train and eval step | |
| p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
| p_eval_step = jax.pmap(eval_step, "batch") | |
| # Replicate the train state on each device | |
| state = state.replicate() | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len_train_dataset}") | |
| logger.info(f" Num Epochs = {num_epochs}") | |
| logger.info( | |
| f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}" | |
| ) | |
| logger.info( | |
| f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}" | |
| ) | |
| logger.info(f" Total global steps = {total_steps}") | |
| logger.info(f" Total optimization steps = {total_optimization_steps}") | |
| epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
| global_step = 0 | |
| def run_evaluation(): | |
| # ======================== Evaluating ============================== | |
| eval_metrics = [] | |
| if training_args.do_eval: | |
| if data_args.streaming: | |
| eval_loader = data_loader_streaming(eval_dataset, eval_batch_size) | |
| else: | |
| eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) | |
| eval_steps = len_eval_dataset // eval_batch_size | |
| for batch in tqdm( | |
| eval_loader, | |
| desc="Evaluating...", | |
| position=2, | |
| leave=False, | |
| total=eval_steps, | |
| ): | |
| # Model forward | |
| metrics = p_eval_step(state.params, batch) | |
| eval_metrics.append(metrics) | |
| # normalize eval metrics | |
| breakpoint() | |
| eval_metrics = get_metrics(eval_metrics) | |
| breakpoint() | |
| eval_metrics = jax.tree_map(jnp.mean, eval_metrics) | |
| breakpoint() | |
| # log metrics | |
| wandb_log(eval_metrics, step=global_step, prefix="eval") | |
| # Print metrics and update progress bar | |
| desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})" | |
| epochs.write(desc) | |
| epochs.desc = desc | |
| return eval_metrics | |
| def run_save_model(state, step, epoch, eval_metrics=None): | |
| if jax.process_index() == 0: | |
| params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | |
| # save model locally | |
| model.save_pretrained( | |
| training_args.output_dir, | |
| params=params, | |
| ) | |
| # save tokenizer | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| # save state | |
| state = unreplicate(state) | |
| with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f: | |
| f.write(to_bytes(state.opt_state)) | |
| with (Path(training_args.output_dir) / "training_state.json").open( | |
| "w" | |
| ) as f: | |
| json.dump({"step": state.step.item()}, f) | |
| # save to W&B | |
| if data_args.log_model: | |
| metadata = {"step": step, "epoch": epoch} | |
| if eval_metrics is not None: | |
| metadata["eval/loss"] = eval_metrics["loss"] | |
| artifact = wandb.Artifact( | |
| name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata | |
| ) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "flax_model.msgpack") | |
| ) | |
| artifact.add_file(str(Path(training_args.output_dir) / "config.json")) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "tokenizer.json") | |
| ) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "tokenizer_config.json") | |
| ) | |
| artifact.add_file(str(Path(training_args.output_dir) / "vocab.json")) | |
| artifact.add_file(str(Path(training_args.output_dir) / "merges.txt")) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "special_tokens_map.json") | |
| ) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "opt_state.msgpack") | |
| ) | |
| artifact.add_file( | |
| str(Path(training_args.output_dir) / "training_state.json") | |
| ) | |
| wandb.run.log_artifact(artifact) | |
| # save some space | |
| c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache() | |
| c.cleanup(wandb.util.from_human_size("15GB")) | |
| # save to the hub | |
| if training_args.push_to_hub: | |
| model.save_pretrained( | |
| training_args.output_dir, | |
| params=params, | |
| push_to_hub=training_args.push_to_hub, | |
| commit_message=f"Saving weights and logs of epoch {epoch+1}", | |
| temp_dir=True, # avoid issues with being in a repository | |
| ) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| # Create sampling rng | |
| rng, input_rng = jax.random.split(rng) | |
| # Generate an epoch by shuffling sampling indices from the train dataset | |
| if data_args.streaming: | |
| train_dataset.set_epoch(epoch) | |
| train_loader = data_loader_streaming(train_dataset, train_batch_size) | |
| else: | |
| train_loader = data_loader( | |
| input_rng, train_dataset, train_batch_size, shuffle=True | |
| ) | |
| # train | |
| for batch in tqdm( | |
| train_loader, | |
| desc="Training...", | |
| position=1, | |
| leave=False, | |
| total=steps_per_epoch, | |
| ): | |
| global_step += 1 | |
| state, train_metric = p_train_step(state, batch) | |
| if global_step % data_args.log_interval == 0 and jax.process_index() == 0: | |
| # log metrics | |
| wandb_log(unreplicate(train_metric), step=global_step, prefix="train") | |
| if training_args.eval_steps and global_step % training_args.eval_steps == 0: | |
| run_evaluation() | |
| if global_step % data_args.save_model_steps == 0: | |
| run_save_model(state, global_step, epoch) | |
| # log final train metrics | |
| wandb_log(unreplicate(train_metric), step=global_step, prefix="train") | |
| train_metric = unreplicate(train_metric) | |
| epochs.write( | |
| f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" | |
| ) | |
| # Final evaluation | |
| eval_metrics = run_evaluation() | |
| # save checkpoint after each epoch and push checkpoint to the hub | |
| run_save_model(state, global_step, epoch, eval_metrics) | |
| if __name__ == "__main__": | |
| main() | |