Spaces:
Running
Running
#!/usr/bin/env python | |
# coding: utf-8 | |
# VQGAN-JAX - Encoding HowTo | |
import numpy as np | |
# For data loading | |
import torch | |
import torchvision.transforms.functional as TF | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision.datasets.folder import default_loader | |
from torchvision.transforms import InterpolationMode | |
# For data saving | |
from pathlib import Path | |
import pandas as pd | |
from tqdm import tqdm | |
import jax | |
from jax import pmap | |
from vqgan_jax.modeling_flax_vqgan import VQModel | |
## Params and arguments | |
image_list = '/sddata/dalle-mini/CC12M/10k.tsv' # List of paths containing images to encode | |
output_tsv = 'output.tsv' # Encoded results | |
batch_size = 64 | |
num_workers = 4 # TPU v3-8s have 96 cores, so feel free to increase this number when necessary | |
# Load model | |
model = VQModel.from_pretrained("flax-community/vqgan_f16_16384") | |
## Data Loading. | |
# Simple torch Dataset to load images from paths. | |
# You can use your own pipeline instead. | |
class ImageDataset(Dataset): | |
def __init__(self, image_list_path: str, image_size: int, max_items=None): | |
""" | |
:param image_list_path: Path to a file containing a list of all images. We assume absolute paths for now. | |
:param image_size: Image size. Source images will be resized and center-cropped. | |
:max_items: Limit dataset size for debugging | |
""" | |
self.image_list = pd.read_csv(image_list_path, sep='\t', header=None) | |
if max_items is not None: self.image_list = self.image_list[:max_items] | |
self.image_size = image_size | |
def __len__(self): | |
return len(self.image_list) | |
def _get_raw_image(self, i): | |
image_path = Path(self.image_list.iloc[i][0]) | |
return default_loader(image_path) | |
def resize_image(self, image): | |
s = min(image.size) | |
r = self.image_size / s | |
s = (round(r * image.size[1]), round(r * image.size[0])) | |
image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS) | |
image = TF.center_crop(image, output_size = 2 * [self.image_size]) | |
image = np.expand_dims(np.array(image), axis=0) | |
return image | |
def __getitem__(self, i): | |
image = self._get_raw_image(i) | |
return self.resize_image(image) | |
## Encoding | |
# Encoding function to be parallelized with `pmap` | |
# Note: images have to be square | |
def encode(model, batch): | |
_, indices = model.encode(batch) | |
return indices | |
# Alternative: create a batch with num_tpus*batch_size and use `shard` to distribute. | |
def superbatch_generator(dataloader, num_tpus): | |
iter_loader = iter(dataloader) | |
for batch in iter_loader: | |
superbatch = [batch.squeeze(1)] | |
try: | |
for _ in range(num_tpus-1): | |
batch = next(iter_loader) | |
if batch is None: | |
break | |
# Skip incomplete last batch | |
if batch.shape[0] == dataloader.batch_size: | |
superbatch.append(batch.squeeze(1)) | |
except StopIteration: | |
pass | |
superbatch = torch.stack(superbatch, axis=0) | |
yield superbatch | |
def encode_dataset(dataset, batch_size=32): | |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) | |
superbatches = superbatch_generator(dataloader, num_tpus=jax.device_count()) | |
num_tpus = jax.device_count() | |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers) | |
superbatches = superbatch_generator(dataloader, num_tpus=num_tpus) | |
p_encoder = pmap(lambda batch: encode(model, batch)) | |
# We save each superbatch to avoid reallocation of buffers as we process them. | |
# We keep the file open to prevent excessive file seeks. | |
with open(output_tsv, "w") as file: | |
iterations = len(dataset) // (batch_size * num_tpus) | |
for n in tqdm(range(iterations)): | |
superbatch = next(superbatches) | |
encoded = p_encoder(superbatch.numpy()) | |
encoded = encoded.reshape(-1, encoded.shape[-1]) | |
# Extract paths from the dataset, and save paths and encodings (as string) to disk | |
start_index = n * batch_size * num_tpus | |
end_index = (n+1) * batch_size * num_tpus | |
paths = dataset.image_list[start_index:end_index][0].values | |
encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded)) | |
batch_df = pd.DataFrame.from_dict({"image_file": paths, "encoding": encoded_as_string}) | |
batch_df.to_csv(file, sep='\t', header=(n==0), index=None) | |
dataset = ImageDataset(image_list, image_size=256) | |
encoded_dataset = encode_dataset(dataset, batch_size=batch_size) | |