File size: 8,558 Bytes
e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 8235d5d e411600 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import os
from PIL import Image
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoImageProcessor
# import utils
import base64
# from datasets import load_metric
import evaluate
import logging
# Only show log messages that are at the ERROR level or above, effectively filtering out any warnings
logging.getLogger('transformers').setLevel(logging.ERROR)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
image_processor = AutoImageProcessor.from_pretrained("pstroe/bullinger-general-model")
model = VisionEncoderDecoderModel.from_pretrained("pstroe/bullinger-general-model")
# Create examples
# Get images and respective transcriptions from the examples directory
def get_example_data(folder_path="./examples/"):
example_data = []
# Get list of all files in the folder
all_files = os.listdir(folder_path)
# Loop through the file list
for file_name in all_files:
file_path = os.path.join(folder_path, file_name)
# Check if the file is an image (.png)
if file_name.endswith(".png"):
# Construct the corresponding .txt filename (same name)
corresponding_text_file_name = file_name.replace(".png", ".txt")
corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name)
# Initialize to a default value
transcription = "Transcription not found."
# Try to read the content from the .txt file
try:
with open(corresponding_text_file_path, "r") as f:
transcription = f.read().strip()
except FileNotFoundError:
pass # If the corresponding .txt file is not found, leave the default value
example_data.append([file_path, transcription])
return example_data
# From pstroe's script
# def compute_metrics(pred):
# labels_ids = pred.label_ids
# pred_ids = pred.predictions
# pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
# labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
# label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
# cer = cer_metric.compute(predictions=pred_str, references=label_str)
# return {"cer": cer}
def process_image(image, ground_truth):
cer = None
# prepare image
pixel_values = image_processor(image, return_tensors="pt").pixel_values
# generate (no beam search)
generated_ids = model.generate(pixel_values)
# decode
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
if ground_truth is not None and ground_truth.strip() != "":
# Debug: Print lengths before computing metric
print("Number of predictions:", len(generated_text))
print("Number of references:", len(ground_truth))
# Check if lengths match
if len(generated_text) != len(ground_truth):
print("Mismatch in number of predictions and references.")
print("Predictions:", generated_text)
print("References:", ground_truth)
print("\n")
cer = cer_metric.compute(predictions=[generated_text], references=[ground_truth])
# cer = f"{cer:.3f}"
else:
cer = "Ground truth not provided"
return generated_text, cer
# One way to use .svg files
# logo_url = "https://www.bullinger-digital.ch/bullinger-digital.svg"
# logo_url = "https://www.cl.uzh.ch/docroot/logos/uzh_logo_e_pos.svg"
# header_html = "<img src='data:image/png;base64,{}' class='img-fluid' width='180px'>".format(
# utils.img_to_bytes(".uzh_logo_e_pos.svg")
# )
# Encode images
with open("assets/uzh_logo_mod.png", "rb") as img_file:
logo_html = base64.b64encode(img_file.read()).decode('utf-8')
# with open("assets/bullinger-digital.png", "rb") as img_file:
with open("assets/bullinger_logo.png", "rb") as img_file:
footer_html = base64.b64encode(img_file.read()).decode('utf-8')
# App header
title = """
<h1 style='text-align: center'> TrOCR: Bullinger Dataset</p>
"""
description = """
Use of Microsoft's [TrOCR](https://arxiv.org/abs/2109.10282), an encoder-decoder model consisting of an \
image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition \
(OCR) and handwritten text recognition (HTR) on text line images. \
This particular model was fine-tuned on [Bullinger Dataset](https://github.com/pstroe/bullinger-htr) \
as part of the project [Bullinger Digital](https://www.bullinger-digital.ch)
([References](https://www.cl.uzh.ch/de/people/team/compling/pstroebel.html#Publications)).
* HF `model card`: [pstroe/bullinger-general-model](https://huggingface.co/pstroe/bullinger-general-model) | \
[Flexible Techniques for Automatic Text Recognition of Historical Documents](https://doi.org/10.5167/uzh-234886)
"""
# articles = """
# <p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a><br>
# <a href='https://doi.org/10.5167/uzh-234886'>Flexible Techniques for Automatic Text Recognition of Historical Documents</a><br>
# <a href='https://zenodo.org/record/7715357'>Bullingers Briefwechsel zugänglich machen: Stand der Handschriftenerkennung</a></p>
# """
# Read .png and the respective .txt files
examples = get_example_data()
# load_metric() is deprecated
# cer_metric = load_metric("cer")
# pip install jiwer
# pip install evaluate
cer_metric = evaluate.load("cer")
with gr.Blocks(
theme=gr.themes.Soft(),
title="TrOCR Bullinger",
) as demo:
gr.HTML(
f"""
<div style='display: flex; justify-content: right; width: 100%;'>
<img src='data:image/png;base64,{logo_html}' class='img-fluid' width='200px'>
</div>
"""
)
#174x60
title = gr.HTML(title)
description = gr.Markdown(description)
with gr.Row():
with gr.Column(variant="panel"):
input = gr.components.Image(type="pil", label="Input image:")
with gr.Row():
btn_clear = gr.Button(value="Clear")
button = gr.Button(value="Submit")
with gr.Column(variant="panel"):
output = gr.components.Textbox(label="Generated text:")
ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:")
cer_output = gr.components.Textbox(label="CER:")
with gr.Row():
with gr.Accordion(label="Choose an example from test set:", open=False):
gr.Examples(
examples=examples,
inputs = [input, ground_truth],
label=None,
)
with gr.Row():
# gr.HTML(
# f"""
# <div style="display: flex; align-items: center; justify-content: center">
# <img src="data:image/png;base64,{footer_html}" style="width: 150px; height: 60px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
# <p style="font-size: 13px">
# Bullinger Digital | Institut für Computerlinguistik, Universität Zürich, 2023
# </p>
# </div>
# """
# )
gr.HTML(
f"""
<div style="display: flex; align-items: center; justify-content: center">
<img src="data:image/png;base64,{footer_html}" style="height: 40px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
<p style="font-size: 13px">
<strong>Bullinger</strong><u>Digital</u> | Institut für Computerlinguistik, Universität Zürich, 2023
</p>
</div>
"""
)
#383x85
button.click(process_image, inputs=[input, ground_truth], outputs=[output, cer_output])
btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output])
# # Try to force light mode
# js = """
# function () {
# gradioURL = window.location.href
# if (!gradioURL.endsWith('?__theme=light')) {
# window.location.replace(gradioURL + '?__theme=light');
# }
# }"""
# demo.load(_js=js)
if __name__ == "__main__":
demo.launch(favicon_path="icon.png")
|