Spaces:
Runtime error
Runtime error
push summagary
Browse files- app.py +58 -0
- requirements.txt +8 -0
- summagery_pipline.py +233 -0
- utils.py +119 -0
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
temp_dir = './temp/'
|
| 4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
| 5 |
+
os.environ['TMPDIR'] = temp_dir
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import shutil
|
| 8 |
+
from summagery_pipline import Summagery
|
| 9 |
+
|
| 10 |
+
if os.path.exists(temp_dir):
|
| 11 |
+
try:
|
| 12 |
+
shutil.rmtree(temp_dir)
|
| 13 |
+
print(f"The directory at {temp_dir} has been removed successfully along with its contents.")
|
| 14 |
+
except OSError as e:
|
| 15 |
+
print(f"Error: {temp_dir} - {e}")
|
| 16 |
+
|
| 17 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 18 |
+
|
| 19 |
+
def generate(text, batch_size, model_type, abstractness):
|
| 20 |
+
|
| 21 |
+
model = Summagery(model_type,batch_size=int(batch_size),abstractness=abstractness)
|
| 22 |
+
images=model.ignite(text)
|
| 23 |
+
|
| 24 |
+
return images
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
with gr.Blocks(theme=gr.themes.Soft(),) as demo:
|
| 28 |
+
gr.Markdown(
|
| 29 |
+
"""
|
| 30 |
+
<h1 style="text-align:center;">Welcome to Summagery: Document Summarization through Images</h1>
|
| 31 |
+
|
| 32 |
+
<h3 style="text-align:center;">Summarize long and short documents on any topic as images</h3>
|
| 33 |
+
|
| 34 |
+
<p style="text-align:left;">1. <b>Document:</b> Enter the text of the document you want to summarize.</p>
|
| 35 |
+
<p style="text-align:left;">2. <b>Batch Size:</b> Adjust the batch size for processing very long documents (e.g., 500 pages)</p>
|
| 36 |
+
<p style="text-align:left;">3. <b>T5_Model_Checkpoint:</b> Choose the model checkpoint (e.g., "t5-large", "t5-base", "t5-small"). Smaller models require less memory.</p>
|
| 37 |
+
<p style="text-align:left;">4. <b>Abstractness:</b> Slide to select the level of abstractness of your document, vary this attribute to explore different images.</p>
|
| 38 |
+
|
| 39 |
+
<p style="text-align:left;"> <b>For more details:</b> check out my <a href="https://fittar.me/post/summagary/" target="_blank">blog post</a> for a comprehensive explanation of the Summagery project.</p>
|
| 40 |
+
""")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
inputs = [
|
| 44 |
+
gr.Textbox(label="Document", lines=10,interactive=True),
|
| 45 |
+
gr.Number(label="Batch Size", value=5),
|
| 46 |
+
gr.Dropdown(label="T5_Model_Checkpoint", choices=["t5-large", "t5-base", "t5-small"], value='t5-large'),
|
| 47 |
+
gr.Slider(label="Abstractness", minimum=0, maximum=1, value=.2)
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
outputs = gr.Gallery(
|
| 51 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
| 52 |
+
, columns=[2], rows=[2], object_fit="contain", height="auto")
|
| 53 |
+
|
| 54 |
+
clear = gr.ClearButton([inputs[0]])
|
| 55 |
+
greet_btn = gr.Button("Submit")
|
| 56 |
+
greet_btn.click(fn=generate, inputs=inputs, outputs=outputs, api_name="Summagery")
|
| 57 |
+
|
| 58 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch~=2.0.1
|
| 2 |
+
diffusers~=0.19.3
|
| 3 |
+
transformers~=4.30.2
|
| 4 |
+
image-reward~=1.5
|
| 5 |
+
numpy~=1.24.4
|
| 6 |
+
tqdm
|
| 7 |
+
pandas
|
| 8 |
+
gradio
|
summagery_pipline.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelWithLMHead, AutoTokenizer
|
| 2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 3 |
+
from diffusers import DiffusionPipeline
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
import random
|
| 9 |
+
from utils import mpnet_embed_class, get_concreteness, Collate_t5
|
| 10 |
+
from torch.utils.data import DataLoader
|
| 11 |
+
from utils import SentenceDataset
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class Summagery:
|
| 15 |
+
|
| 16 |
+
def __init__(self, t5_checkpoint, batch_size=5, abstractness=.4, max_d_length=1256, num_prompt=3, device='cuda'):
|
| 17 |
+
|
| 18 |
+
# ViPE: Visualize Pretty-much Everything
|
| 19 |
+
self.vipe_model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-M-CTX7')
|
| 20 |
+
vipe_tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
|
| 21 |
+
vipe_tokenizer.pad_token = vipe_tokenizer.eos_token
|
| 22 |
+
self.vipe_tokenizer = vipe_tokenizer
|
| 23 |
+
|
| 24 |
+
# SDXL, load both base & refiner
|
| 25 |
+
self.basexl = DiffusionPipeline.from_pretrained(
|
| 26 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
| 27 |
+
)
|
| 28 |
+
self.refinerxl = DiffusionPipeline.from_pretrained(
|
| 29 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
| 30 |
+
text_encoder_2=self.basexl.text_encoder_2,
|
| 31 |
+
vae=self.basexl.vae,
|
| 32 |
+
torch_dtype=torch.float16,
|
| 33 |
+
use_safetensors=True,
|
| 34 |
+
variant="fp16",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
self.device = device
|
| 38 |
+
self.max_d_length = max_d_length # maximum document length to handle before chunking
|
| 39 |
+
self.final_document_length = 60
|
| 40 |
+
self.num_prompt = num_prompt # how many prompts to generate per document
|
| 41 |
+
self.abstractness = abstractness # to explore the prompts , just a handle from 0 to 1
|
| 42 |
+
self.concreteness_dataset = './data/concreteness.csv'
|
| 43 |
+
self.batch_size = batch_size
|
| 44 |
+
# T5
|
| 45 |
+
self.t5_model = AutoModelWithLMHead.from_pretrained(t5_checkpoint)
|
| 46 |
+
self.t5_tokenizer = AutoTokenizer.from_pretrained(t5_checkpoint, model_max_length=max_d_length)
|
| 47 |
+
self.collate_t5 = Collate_t5(self.t5_tokenizer)
|
| 48 |
+
|
| 49 |
+
# for concrteness rating of the prompts
|
| 50 |
+
data = pd.read_csv(self.concreteness_dataset, header=0,
|
| 51 |
+
delimiter='\t')
|
| 52 |
+
self.word2score = {w: s for w, s in zip(data['WORD'], data['RATING'])}
|
| 53 |
+
|
| 54 |
+
# for large documents, divide them into chunks with self.max_d_length size
|
| 55 |
+
def document_preprocess(self, document):
|
| 56 |
+
documents = []
|
| 57 |
+
words = document.split()
|
| 58 |
+
if len(words) <= self.max_d_length:
|
| 59 |
+
return [document]
|
| 60 |
+
|
| 61 |
+
start = 0
|
| 62 |
+
while (len(words) > start):
|
| 63 |
+
if len(words) > start + self.max_d_length:
|
| 64 |
+
chunk = ' '.join(words[start:start + self.max_d_length])
|
| 65 |
+
else:
|
| 66 |
+
chunk = ' '.join(words[start:])
|
| 67 |
+
|
| 68 |
+
start += self.max_d_length
|
| 69 |
+
documents.append(chunk)
|
| 70 |
+
|
| 71 |
+
return documents
|
| 72 |
+
|
| 73 |
+
def t5_summarize(self, document):
|
| 74 |
+
|
| 75 |
+
continue_summarization = True
|
| 76 |
+
if len(document.split()) <= self.final_document_length:
|
| 77 |
+
return document
|
| 78 |
+
|
| 79 |
+
self.t5_model.to(self.device)
|
| 80 |
+
|
| 81 |
+
documents = self.document_preprocess(document)
|
| 82 |
+
|
| 83 |
+
if len(documents) > self.batch_size:
|
| 84 |
+
|
| 85 |
+
# use batch inference to make things faster
|
| 86 |
+
while (continue_summarization):
|
| 87 |
+
dataset = SentenceDataset(documents)
|
| 88 |
+
dataloader = DataLoader(dataset, batch_size=self.batch_size, collate_fn=self.collate_t5, num_workers=2)
|
| 89 |
+
summaries = ''
|
| 90 |
+
print('summarizing...')
|
| 91 |
+
for text_batch, batch in tqdm(dataloader):
|
| 92 |
+
if batch.input_ids.shape[1] > 5:
|
| 93 |
+
max_length = int(batch.input_ids.shape[1] / 2) # summarize the current chunk by half
|
| 94 |
+
if max_length < self.final_document_length: # unless max_length is too short
|
| 95 |
+
max_length = self.final_document_length
|
| 96 |
+
|
| 97 |
+
batch = batch.to(self.device)
|
| 98 |
+
generated_ids = self.t5_model.generate(input_ids=batch.input_ids,
|
| 99 |
+
attention_mask=batch.attention_mask, num_beams=3,
|
| 100 |
+
max_length=max_length,
|
| 101 |
+
repetition_penalty=2.5,
|
| 102 |
+
length_penalty=1.0, early_stopping=True)
|
| 103 |
+
preds = \
|
| 104 |
+
[self.t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 105 |
+
for g
|
| 106 |
+
in
|
| 107 |
+
generated_ids]
|
| 108 |
+
for pred in preds:
|
| 109 |
+
summaries = summaries + pred + '. '
|
| 110 |
+
else:
|
| 111 |
+
for chunk in text_batch:
|
| 112 |
+
summaries = summaries + chunk + '. '
|
| 113 |
+
|
| 114 |
+
if len(summaries.split()) <= self.final_document_length:
|
| 115 |
+
continue_summarization = False
|
| 116 |
+
print('finished summarizing.')
|
| 117 |
+
else:
|
| 118 |
+
documents = self.document_preprocess(summaries)
|
| 119 |
+
else:
|
| 120 |
+
|
| 121 |
+
# skip batch inference since we only have a few documents
|
| 122 |
+
while (continue_summarization):
|
| 123 |
+
summaries = ''
|
| 124 |
+
print('summarizing...')
|
| 125 |
+
for chunk in tqdm(documents):
|
| 126 |
+
if len(chunk.split()) > 2:
|
| 127 |
+
max_length = int(len(chunk.split()) / 2) # summarize the current chunk by half
|
| 128 |
+
if max_length < self.final_document_length: # unless max_length is too short
|
| 129 |
+
max_length = self.final_document_length
|
| 130 |
+
|
| 131 |
+
input_ids = self.t5_tokenizer.encode('summarize: ' + chunk, return_tensors="pt",
|
| 132 |
+
add_special_tokens=True, padding='longest',
|
| 133 |
+
max_length=self.max_d_length)
|
| 134 |
+
input_ids = input_ids.to(self.device)
|
| 135 |
+
generated_ids = self.t5_model.generate(input_ids=input_ids, num_beams=3, max_length=max_length,
|
| 136 |
+
repetition_penalty=2.5,
|
| 137 |
+
length_penalty=1.0, early_stopping=True)
|
| 138 |
+
|
| 139 |
+
pred = \
|
| 140 |
+
[self.t5_tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g
|
| 141 |
+
in
|
| 142 |
+
generated_ids][0]
|
| 143 |
+
summaries = summaries + pred + '. '
|
| 144 |
+
else:
|
| 145 |
+
summaries = summaries + chunk + '. '
|
| 146 |
+
|
| 147 |
+
if len(summaries.split()) <= self.final_document_length:
|
| 148 |
+
continue_summarization = False
|
| 149 |
+
print('finished summarizing.')
|
| 150 |
+
else:
|
| 151 |
+
documents = self.document_preprocess(summaries)
|
| 152 |
+
|
| 153 |
+
return summaries
|
| 154 |
+
|
| 155 |
+
def vipe_generate(self, summary, do_sample=True, top_k=100, epsilon_cutoff=.00005, temperature=1):
|
| 156 |
+
batch_size = random.choice([20, 40, 60])
|
| 157 |
+
input_text = [summary] * batch_size
|
| 158 |
+
# mark the text with special tokens
|
| 159 |
+
input_text = [self.vipe_tokenizer.eos_token + i + self.vipe_tokenizer.eos_token for i in input_text]
|
| 160 |
+
batch = self.vipe_tokenizer(input_text, padding=True, return_tensors="pt")
|
| 161 |
+
|
| 162 |
+
input_ids = batch["input_ids"].to(self.device)
|
| 163 |
+
attention_mask = batch["attention_mask"].to(self.device)
|
| 164 |
+
self.vipe_model.to(self.device)
|
| 165 |
+
# how many new tokens to generate at max
|
| 166 |
+
max_prompt_length = 50
|
| 167 |
+
|
| 168 |
+
generated_ids = self.vipe_model.generate(input_ids=input_ids, attention_mask=attention_mask,
|
| 169 |
+
max_new_tokens=max_prompt_length, do_sample=do_sample, top_k=top_k,
|
| 170 |
+
epsilon_cutoff=epsilon_cutoff, temperature=temperature)
|
| 171 |
+
# return only the generated prompts
|
| 172 |
+
prompts = self.vipe_tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):],
|
| 173 |
+
skip_special_tokens=True)
|
| 174 |
+
|
| 175 |
+
# for semantic similarity
|
| 176 |
+
mpnet_object = mpnet_embed_class(device=self.device, nli=False)
|
| 177 |
+
|
| 178 |
+
similarities = mpnet_object.get_mpnet_embed_batch(prompts, [summary] * batch_size,
|
| 179 |
+
batch_size=batch_size).cpu().numpy()
|
| 180 |
+
concreteness_score = get_concreteness(prompts, self.word2score)
|
| 181 |
+
|
| 182 |
+
final_scores = [i * (1 - self.abstractness) + (self.abstractness) * j for i, j in
|
| 183 |
+
zip(similarities, concreteness_score)]
|
| 184 |
+
# Get the indices that would sort the final_scores in descending order
|
| 185 |
+
sorted_indices = np.argsort(final_scores)[::-1]
|
| 186 |
+
|
| 187 |
+
# Extract the indices of the top 5 highest scores
|
| 188 |
+
top_indices = sorted_indices[:self.num_prompt]
|
| 189 |
+
prompts = [prompts[i] for i in top_indices]
|
| 190 |
+
|
| 191 |
+
return prompts
|
| 192 |
+
|
| 193 |
+
def sdxl_generate(self, prompts):
|
| 194 |
+
# Define how many steps and what % of steps to be run on each experts (80/20) here
|
| 195 |
+
n_steps = 50
|
| 196 |
+
high_noise_frac = 0.8
|
| 197 |
+
self.basexl.to(self.device)
|
| 198 |
+
self.refinerxl.to(self.device)
|
| 199 |
+
|
| 200 |
+
images=[]
|
| 201 |
+
for i, p in enumerate(prompts):
|
| 202 |
+
# torch.manual_seed(i)
|
| 203 |
+
image = self.basexl(
|
| 204 |
+
prompt=p,
|
| 205 |
+
num_inference_steps=n_steps,
|
| 206 |
+
denoising_end=high_noise_frac,
|
| 207 |
+
output_type="latent",
|
| 208 |
+
).images
|
| 209 |
+
image = self.refinerxl(
|
| 210 |
+
prompt=p,
|
| 211 |
+
num_inference_steps=n_steps,
|
| 212 |
+
denoising_start=high_noise_frac,
|
| 213 |
+
image=image,
|
| 214 |
+
).images[0]
|
| 215 |
+
|
| 216 |
+
images.append(image)
|
| 217 |
+
|
| 218 |
+
return images
|
| 219 |
+
|
| 220 |
+
def ignite(self, document):
|
| 221 |
+
prompts = []
|
| 222 |
+
summary = self.t5_summarize(document)
|
| 223 |
+
prompts.append(summary)
|
| 224 |
+
summary = summary.replace('. ', '; ')
|
| 225 |
+
print(summary)
|
| 226 |
+
prompts.extend(self.vipe_generate(summary))
|
| 227 |
+
|
| 228 |
+
for p in prompts:
|
| 229 |
+
print(p + '\n')
|
| 230 |
+
|
| 231 |
+
images=self.sdxl_generate(prompts)
|
| 232 |
+
|
| 233 |
+
return images
|
utils.py
ADDED
|
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn.functional import cosine_similarity
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_concreteness(prompts, word2score):
|
| 9 |
+
scores=[]
|
| 10 |
+
for prompt in prompts:
|
| 11 |
+
conc_scores=[word2score[w]/10 for w in prompt.split() if w in word2score]
|
| 12 |
+
if len(conc_scores) < 1:
|
| 13 |
+
scores.append(0.10)
|
| 14 |
+
else:
|
| 15 |
+
scores.append(np.mean(conc_scores))
|
| 16 |
+
|
| 17 |
+
return scores
|
| 18 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
| 19 |
+
def mean_pooling(model_output, attention_mask):
|
| 20 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
| 21 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 22 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 23 |
+
|
| 24 |
+
def compute_cosine_similarity(embeddings_1, embeddings_2):
|
| 25 |
+
# Compute cosine similarity between embeddings_1 and embeddings_2
|
| 26 |
+
similarities = cosine_similarity(embeddings_1, embeddings_2)
|
| 27 |
+
|
| 28 |
+
return similarities
|
| 29 |
+
|
| 30 |
+
class SentenceDataset(Dataset):
|
| 31 |
+
def __init__(self, sentences):
|
| 32 |
+
self.sentences = sentences
|
| 33 |
+
|
| 34 |
+
def __len__(self):
|
| 35 |
+
return len(self.sentences)
|
| 36 |
+
|
| 37 |
+
def __getitem__(self, index):
|
| 38 |
+
return self.sentences[index]
|
| 39 |
+
|
| 40 |
+
class Collate_t5:
|
| 41 |
+
def __init__(self, tokenizer):
|
| 42 |
+
self.t5_tokenizer = tokenizer
|
| 43 |
+
|
| 44 |
+
def __call__(self, documents):
|
| 45 |
+
batch=['summarize: ' + s for s in documents]
|
| 46 |
+
# Tokenize sentences
|
| 47 |
+
encoded_inputs = self.t5_tokenizer(batch, return_tensors="pt",
|
| 48 |
+
add_special_tokens=True, padding='longest',
|
| 49 |
+
)
|
| 50 |
+
return documents, encoded_inputs
|
| 51 |
+
|
| 52 |
+
class collate_cl:
|
| 53 |
+
def __init__(self, tokenizer):
|
| 54 |
+
self.tokenizer = tokenizer
|
| 55 |
+
|
| 56 |
+
def __call__(self, batch):
|
| 57 |
+
# Tokenize sentences
|
| 58 |
+
encoded_inputs = self.tokenizer(batch, padding=True, truncation=True, return_tensors='pt')
|
| 59 |
+
return encoded_inputs
|
| 60 |
+
|
| 61 |
+
class mpnet_embed_class():
|
| 62 |
+
def __init__(self, device='cuda', nli=True):
|
| 63 |
+
self.device = device
|
| 64 |
+
|
| 65 |
+
if nli:
|
| 66 |
+
model = AutoModel.from_pretrained('sentence-transformers/nli-mpnet-base-v2')
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-mpnet-base-v2')
|
| 68 |
+
else:
|
| 69 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
| 71 |
+
|
| 72 |
+
model.to(device)
|
| 73 |
+
self.model = model
|
| 74 |
+
self.tokenizer = tokenizer
|
| 75 |
+
self.collate_fn = collate_cl(tokenizer)
|
| 76 |
+
|
| 77 |
+
def get_mpnet_embed_batch(self, predictions, ground_truth, batch_size=10):
|
| 78 |
+
|
| 79 |
+
dataset_1 = SentenceDataset(predictions)
|
| 80 |
+
dataset_2 = SentenceDataset(ground_truth)
|
| 81 |
+
|
| 82 |
+
dataloader_1 = DataLoader(dataset_1, batch_size=batch_size, collate_fn=self.collate_fn, num_workers=1)
|
| 83 |
+
dataloader_2 = DataLoader(dataset_2, batch_size=batch_size, collate_fn=self.collate_fn, num_workers=1)
|
| 84 |
+
|
| 85 |
+
# Compute token embeddings
|
| 86 |
+
embeddings_1 = []
|
| 87 |
+
embeddings_2 = []
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
for count, (batch_1, batch_2) in enumerate(zip(dataloader_1, dataloader_2)):
|
| 91 |
+
if count % 50 == 0:
|
| 92 |
+
print(count, ' out of ', len(dataloader_2))
|
| 93 |
+
batch_1 = {key: value.to(self.device) for key, value in batch_1.items()}
|
| 94 |
+
batch_2 = {key: value.to(self.device) for key, value in batch_2.items()}
|
| 95 |
+
|
| 96 |
+
model_output_1 = self.model(**batch_1)
|
| 97 |
+
model_output_2 = self.model(**batch_2)
|
| 98 |
+
|
| 99 |
+
sentence_embeddings_1 = mean_pooling(model_output_1, batch_1['attention_mask'])
|
| 100 |
+
sentence_embeddings_2 = mean_pooling(model_output_2, batch_2['attention_mask'])
|
| 101 |
+
|
| 102 |
+
embeddings_1.append(sentence_embeddings_1)
|
| 103 |
+
embeddings_2.append(sentence_embeddings_2)
|
| 104 |
+
|
| 105 |
+
# Concatenate embeddings
|
| 106 |
+
embeddings_1 = torch.cat(embeddings_1)
|
| 107 |
+
embeddings_2 = torch.cat(embeddings_2)
|
| 108 |
+
|
| 109 |
+
# Normalize embeddings
|
| 110 |
+
embeddings_1 = torch.nn.functional.normalize(embeddings_1, p=2, dim=1)
|
| 111 |
+
embeddings_2 = torch.nn.functional.normalize(embeddings_2, p=2, dim=1)
|
| 112 |
+
|
| 113 |
+
# Compute cosine similarity
|
| 114 |
+
similarities = compute_cosine_similarity(embeddings_1, embeddings_2)
|
| 115 |
+
|
| 116 |
+
# # Average cosine similarity
|
| 117 |
+
# average_similarity = torch.mean(similarities)
|
| 118 |
+
|
| 119 |
+
return similarities
|