import os import queue import threading import time import traceback from dataclasses import dataclass from pathlib import Path from typing import Callable, Literal, Optional, Tuple, Union import click import numpy as np import torch import torch._inductor.config from loguru import logger from tqdm import tqdm from transformers import AutoTokenizer from fish_speech.content_sequence import ( ContentSequence, TextPart, VQPart, ) from fish_speech.tokenizer import IM_END_TOKEN os.environ["TOKENIZERS_PARALLELISM"] = "false" torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True if hasattr(torch._inductor.config, "fx_graph_cache"): # Experimental feature to reduce compilation times, will be on by default in future torch._inductor.config.fx_graph_cache = True from torch.nn.attention import SDPBackend, sdpa_kernel from fish_speech.models.text2semantic.llama import ( BaseTransformer, DualARTransformer, NaiveTransformer, ) def multinomial_sample_one_no_sync( probs_sort, ): # Does multinomial sampling without a cuda synchronization q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def logits_to_probs( logits, temperature: torch.Tensor, top_p: torch.Tensor, repetition_penalty: torch.Tensor, previous_tokens: Optional[torch.Tensor] = None, ) -> torch.Tensor: # Apply repetition penalty if previous_tokens is not None: previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=-1, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=-1, index=previous_tokens, src=score) # Apply top-p sampling sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=-1, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / torch.clip(temperature, min=1e-5) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample( logits, temperature: torch.Tensor, top_p: torch.Tensor, repetition_penalty: torch.Tensor, previous_tokens: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: probs = logits_to_probs( logits=logits[0, -1], temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, previous_tokens=previous_tokens, ) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs def decode_one_token_ar( model: DualARTransformer, x: torch.Tensor, input_pos: torch.Tensor, temperature: torch.Tensor, top_p: torch.Tensor, repetition_penalty: torch.Tensor, audio_masks: torch.Tensor, audio_parts: torch.Tensor, previous_tokens: Optional[torch.Tensor] = None, ) -> torch.Tensor: # print(x, torch.count_nonzero(vq_masks)) forward_result = model.forward_generate( x, input_pos, audio_masks=audio_masks, audio_parts=audio_parts, ) logits = forward_result.logits # [:, -1:] hidden_states = forward_result.hidden_states # [:, -1:] codebooks = [ sample( logits, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, previous_tokens=( previous_tokens[:, 0] if previous_tokens is not None else None ), )[0] ] # Only clear cache for fast_layers, avoid clearing main model cache for layer in model.fast_layers: if hasattr(layer, "attention") and hasattr(layer.attention, "kv_cache"): layer.attention.kv_cache.k_cache.fill_(0) layer.attention.kv_cache.v_cache.fill_(0) input_pos = torch.tensor([0], device=hidden_states.device, dtype=torch.long) model.forward_generate_fast(hidden_states, input_pos) a = codebooks[0] - model.tokenizer.semantic_begin_id a[a < 0] = 0 hidden_states = model.fast_embeddings(a) codebooks.append(a) for codebook_idx in range(1, model.config.num_codebooks): input_pos = torch.tensor( [codebook_idx], device=hidden_states.device, dtype=torch.long ) logits = model.forward_generate_fast(hidden_states, input_pos) short_logits = logits[:, :, :1024] # Convert logits to probs a = sample( short_logits, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, previous_tokens=( previous_tokens[codebook_idx + 1] if previous_tokens is not None else None ), )[0] hidden_states = model.fast_embeddings(a) codebooks.append(a) codebooks = torch.stack(codebooks, dim=1) # Only delete references, let Python GC handle cleanup del logits, hidden_states, forward_result return codebooks.T def decode_n_tokens( model: DualARTransformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, temperature: torch.Tensor, top_p: torch.Tensor, repetition_penalty: torch.Tensor, audio_masks: torch.Tensor, audio_parts: torch.Tensor, decode_one_token=decode_one_token_ar, ): previous_tokens = torch.zeros( (model.config.num_codebooks + 1, model.config.max_seq_len), dtype=torch.int, device=cur_token.device, ) for i in tqdm(range(num_new_tokens)): # We need to get windowed repeat penalty win_size = 16 if i < win_size: window = previous_tokens[:, :win_size] else: window = previous_tokens[:, i - win_size : i] with sdpa_kernel( SDPBackend.MATH ): # Actually better for Inductor to codegen attention here next_token = decode_one_token( model=model, x=cur_token, input_pos=input_pos, previous_tokens=window, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, audio_masks=audio_masks, audio_parts=audio_parts, ).clone() input_pos += 1 cur_token = next_token.view(1, model.config.num_codebooks + 1, -1) previous_tokens[:, i : i + 1] = next_token.view( model.config.num_codebooks + 1, -1 ) if cur_token[0, 0, -1] == model.tokenizer.get_token_id(IM_END_TOKEN): break # Only clean up the large tensor del cur_token return previous_tokens[:, : i + 1] @torch.no_grad() @torch.inference_mode() def generate( *, model: DualARTransformer, prompt: torch.Tensor, max_new_tokens: int, audio_masks: torch.Tensor, audio_parts: torch.Tensor, decode_one_token=decode_one_token_ar, num_samples: int = 1, **sampling_kwargs, ): """ Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested. """ # create an empty tensor of the expected final shape and fill in the current tokens T = prompt.size(1) prompt = prompt[None].repeat(num_samples, 1, 1) if T >= model.config.max_seq_len: raise ValueError( f"Input sequence length {T} exceeds max_seq_len {model.config.max_seq_len}" ) if max_new_tokens: if T + max_new_tokens > model.config.max_seq_len: max_new_tokens = model.config.max_seq_len - T T_new = T + max_new_tokens else: T_new = model.config.max_seq_len max_new_tokens = T_new - T device, dtype = prompt.device, prompt.dtype # Critical fix: Only set up cache on first run or when necessary if not hasattr(model, "_cache_setup_done") or not model._cache_setup_done: with torch.device(device): model.setup_caches( max_batch_size=1, # Fixed to 1, avoid dynamic changes max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) model._cache_setup_done = True codebook_dim = 1 + model.config.num_codebooks # Create new tensor each time, but try to reuse memory input_pos = torch.arange(0, T, device=device, dtype=torch.long) empty = torch.empty( (codebook_dim, model.config.max_seq_len), dtype=dtype, device=device ) empty[:, :T] = prompt seq = empty # Use pre-created fixed parameter tensors temperature = getattr( model, "fixed_temperature", torch.tensor(0.8, device=device, dtype=torch.float) ) top_p = getattr( model, "fixed_top_p", torch.tensor(0.8, device=device, dtype=torch.float) ) repetition_penalty = getattr( model, "fixed_repetition_penalty", torch.tensor(1.1, device=device, dtype=torch.float), ) # If different parameter values are needed, directly modify existing tensors temp_val = sampling_kwargs.get("temperature", 0.7) top_p_val = sampling_kwargs.get("top_p", 0.7) rep_val = sampling_kwargs.get("repetition_penalty", 1.5) if abs(temperature.item() - temp_val) > 1e-6: temperature.fill_(temp_val) if abs(top_p.item() - top_p_val) > 1e-6: top_p.fill_(top_p_val) if abs(repetition_penalty.item() - rep_val) > 1e-6: repetition_penalty.fill_(rep_val) prefill_decode = decode_one_token_ar first_token = prefill_decode( model, prompt.view(1, codebook_dim, -1), input_pos, temperature, top_p, repetition_penalty, audio_masks, audio_parts, ) seq[:, T : T + 1] = first_token # Recreate input_pos input_pos = torch.tensor([T], device=device, dtype=torch.int) x = decode_n_tokens( model, first_token.view(1, codebook_dim, -1), input_pos, max_new_tokens - 1, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, audio_masks=audio_masks, audio_parts=audio_parts, decode_one_token=decode_one_token, ) seq = seq[:, : T + 1 + x.size(1)] seq[:, T + 1 :] = x # Clean up temporary variables del first_token, x, prompt, empty, input_pos return seq def init_model(checkpoint_path, device, precision, compile=False): model = DualARTransformer.from_pretrained(checkpoint_path, load_weights=True) model = model.to(device=device, dtype=precision) logger.info(f"Restored model from checkpoint") if isinstance(model, DualARTransformer): decode_one_token = decode_one_token_ar prefill_n_tokens = decode_one_token_ar logger.info("Using DualARTransformer") else: raise ValueError("Unsupported model type") # Pre-create fixed parameter tensors to avoid runtime creation model.fixed_temperature = torch.tensor(0.7, device=device, dtype=torch.float) model.fixed_top_p = torch.tensor(0.7, device=device, dtype=torch.float) model.fixed_repetition_penalty = torch.tensor(1.5, device=device, dtype=torch.float) # Mark whether cache has been initialized model._cache_setup_done = False if compile: logger.info("Compiling function...") decode_one_token = torch.compile( decode_one_token, backend="inductor" if torch.cuda.is_available() else "aot_eager", mode="reduce-overhead" if torch.cuda.is_available() else None, fullgraph=True, ) return model.eval(), decode_one_token @dataclass class GenerateResponse: action: Literal["sample", "next"] codes: Optional[torch.Tensor] = None text: Optional[str] = None def generate_long( *, model, device: Union[str, torch.device], decode_one_token: Callable, text: str, num_samples: int = 1, max_new_tokens: int = 0, top_p: float = 0.8, repetition_penalty: float = 1.1, temperature: float = 0.8, compile: bool = False, iterative_prompt: bool = True, chunk_length: int = 512, prompt_text: Optional[Union[str, list[str]]] = None, prompt_tokens: Optional[Union[torch.Tensor, list[torch.Tensor]]] = None, ): assert 0 < top_p <= 1, "top_p must be in (0, 1]" assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)" assert 0 < temperature < 2, "temperature must be in (0, 2)" use_prompt = prompt_text is not None and prompt_tokens is not None if use_prompt and isinstance(prompt_text, str): prompt_text = [prompt_text] prompt_tokens = [prompt_tokens] if use_prompt: assert len(prompt_text) == len( prompt_tokens ), "Prompt text and tokens must have the same length" if prompt_tokens: prompt_tokens = [i.cpu() for i in prompt_tokens] model_size = sum(p.numel() for p in model.parameters() if p.requires_grad) tokenizer = model.tokenizer base_content_sequence = ContentSequence(modality="interleave") max_length = model.config.max_seq_len if use_prompt: for t, c in zip(prompt_text, prompt_tokens): base_content_sequence.append( [ TextPart(text=t), VQPart(codes=c), ], add_end=True, speaker=0, ) base_content_sequence.append( [ TextPart(text=text), ], add_end=False, speaker=0, ) encoded, audio_masks, audio_parts = base_content_sequence.encode_for_inference( tokenizer, num_codebooks=model.config.num_codebooks ) if encoded.size(1) > max_length - 2048: raise ValueError(f"Prompt is too long: {encoded.size(1)} > {max_length - 2048}") encoded = encoded.to(device=device) logger.info(f"Encoded text: {text}") for sample_idx in range(num_samples): if torch.cuda.is_available(): torch.cuda.synchronize() global_encoded = [] seg_idx = 0 prompt_length = encoded.size(1) t0 = time.perf_counter() y = generate( model=model, prompt=encoded, max_new_tokens=max_new_tokens, audio_masks=audio_masks, audio_parts=audio_parts, decode_one_token=decode_one_token, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, ) if sample_idx == 0 and seg_idx == 0 and compile: logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") if torch.cuda.is_available(): torch.cuda.synchronize() t = time.perf_counter() - t0 tokens_generated = y.size(1) - prompt_length tokens_sec = tokens_generated / t logger.info( f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec" ) logger.info(f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s") if torch.cuda.is_available(): logger.info( f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB" ) # Put the generated tokens codes = y[1:, prompt_length:-1].clone() assert (codes >= 0).all(), f"Negative code found" decoded = y[:, prompt_length:].clone() global_encoded.append(decoded.cpu()) assert (codes >= 0).all(), f"Negative code found: {codes}" yield GenerateResponse(action="sample", codes=codes, text=text) seg_idx += 1 # Force GPU memory cleanup del y, decoded, codes yield GenerateResponse(action="next") @dataclass class WrappedGenerateResponse: status: Literal["success", "error"] response: Optional[Union[GenerateResponse, Exception]] = None @dataclass class GenerateRequest: request: dict response_queue: queue.Queue def launch_thread_safe_queue( checkpoint_path, device, precision, compile: bool = False, ): input_queue = queue.Queue() init_event = threading.Event() def worker(): model, decode_one_token = init_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) init_event.set() while True: item: GenerateRequest | None = input_queue.get() if item is None: break kwargs = item.request response_queue = item.response_queue try: for chunk in generate_long( model=model, decode_one_token=decode_one_token, **kwargs ): response_queue.put( WrappedGenerateResponse(status="success", response=chunk) ) # Only clear cache after complete request batch if torch.cuda.is_available(): torch.cuda.empty_cache() except Exception as e: logger.error(traceback.format_exc()) response_queue.put(WrappedGenerateResponse(status="error", response=e)) # Clear cache on error if torch.cuda.is_available(): torch.cuda.empty_cache() threading.Thread(target=worker, daemon=True).start() init_event.wait() return input_queue @click.command() @click.option( "--text", type=str, default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.", ) @click.option("--prompt-text", type=str, default=None, multiple=True) @click.option( "--prompt-tokens", type=click.Path(path_type=Path, exists=True), default=None, multiple=True, ) @click.option("--num-samples", type=int, default=1) @click.option("--max-new-tokens", type=int, default=0) @click.option("--top-p", type=float, default=0.8) @click.option("--repetition-penalty", type=float, default=1.1) @click.option("--temperature", type=float, default=0.8) @click.option( "--checkpoint-path", type=click.Path(path_type=Path, exists=True), default="checkpoints/openaudio-s1-mini", ) @click.option("--device", type=str, default="cuda") @click.option("--compile/--no-compile", default=False) @click.option("--seed", type=int, default=42) @click.option("--half/--no-half", default=False) @click.option("--iterative-prompt/--no-iterative-prompt", default=True) @click.option("--chunk-length", type=int, default=300) @click.option("--output-dir", type=Path, default="temp") def main( text: str, prompt_text: Optional[tuple[str, ...]], prompt_tokens: Optional[tuple[Path, ...]], num_samples: int, max_new_tokens: int, top_p: int, repetition_penalty: float, temperature: float, checkpoint_path: Path, device: str, compile: bool, seed: int, half: bool, iterative_prompt: bool, chunk_length: int, output_dir: Path, ) -> None: os.makedirs(output_dir, exist_ok=True) precision = torch.half if half else torch.bfloat16 if ( prompt_text is not None and prompt_tokens is not None and len(prompt_text) != len(prompt_tokens) ): raise ValueError( f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same" ) logger.info("Loading model ...") t0 = time.time() model, decode_one_token = init_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) if torch.cuda.is_available(): torch.cuda.synchronize() logger.info(f"Time to load model: {time.time() - t0:.02f} seconds") prompt_tokens_list = None if prompt_tokens is not None: prompt_tokens_list = [torch.from_numpy(np.load(p)) for p in prompt_tokens] torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) generator = generate_long( model=model, device=device, decode_one_token=decode_one_token, text=text, num_samples=num_samples, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, compile=compile, iterative_prompt=iterative_prompt, chunk_length=chunk_length, prompt_text=list(prompt_text) if prompt_text else None, prompt_tokens=prompt_tokens_list, ) idx = 0 codes = [] for response in generator: if response.action == "sample": codes.append(response.codes) logger.info(f"Sampled text: {response.text}") elif response.action == "next": if codes: codes_npy_path = os.path.join(output_dir, f"codes_{idx}.npy") np.save(codes_npy_path, torch.cat(codes, dim=1).cpu().numpy()) logger.info(f"Saved codes to {codes_npy_path}") logger.info(f"Next sample") codes = [] idx += 1 else: logger.error(f"Error: {response}") if __name__ == "__main__": main()