import random from dataclasses import dataclass from itertools import chain from pathlib import Path from random import Random from typing import Optional, Union import grpc import numpy as np import pyarrow.parquet as pq import torch import torch.nn.functional as F from datasets.download.streaming_download_manager import xopen from huggingface_hub import HfApi from lightning import LightningDataModule from torch.distributed import get_rank, get_world_size, is_initialized from torch.utils.data import DataLoader, IterableDataset, get_worker_info from transformers import AutoTokenizer from fish_speech.datasets.protos.text_data_pb2 import SampledData from fish_speech.datasets.protos.text_data_stream import read_pb_stream from fish_speech.text.clean import clean_text from fish_speech.utils import RankedLogger from fish_speech.utils.braceexpand import braceexpand log = RankedLogger(__name__, rank_zero_only=True) CODEBOOK_PAD_TOKEN_ID = 0 CODEBOOK_EOS_TOKEN_ID = 1 def split_by_rank_worker(files): # We need to know the total number of devices # to split the data properly total_devices = 1 if is_initialized(): total_devices = get_world_size() worker_info = get_worker_info() if worker_info is not None: total_devices *= worker_info.num_workers if len(files) < total_devices: # Repeat the files N times to match the number of devices files = files * (total_devices // len(files) + 1) # DDP if is_initialized(): files = files[get_rank() :: get_world_size()] # Split by worker if worker_info is not None: files = files[worker_info.id :: worker_info.num_workers] return files class StreamTextDataset(IterableDataset): def __init__( self, files: Optional[Union[list[str], str]] = None, prefix: Optional[str] = None, seed: int = 42, parquet_batch_size: int = 10000, repo: str = "uonlp/CulturaX", max_length: int = 1024, tokenizer: AutoTokenizer = None, ): super().__init__() self.seed = seed self.parquet_batch_size = parquet_batch_size self.repo = repo self.max_length = max_length self.tokenizer = tokenizer if files is None and prefix is None: raise ValueError("Either files or prefix must be specified") if prefix is not None: files = HfApi().list_repo_files(repo, repo_type="dataset") files = [ f for f in files if f.startswith(prefix) and f.endswith(".parquet") ] log.info(f"Found {len(files)} files in {repo} with prefix {prefix}") else: if isinstance(files, str): files = [files] files = list(chain.from_iterable(map(braceexpand, files))) log.info(f"Expanded {len(files)} files in {repo}") # Get sharded files self.files = sorted(files) Random(seed).shuffle(self.files) def __iter__(self): files = split_by_rank_worker(self.files) random.shuffle(files) for filename in files: try: yield from self.parse_data(filename) except Exception as e: log.exception(f"Failed to parse {filename}: {e}") def parse_data(self, filename: str): for data in self.parse_data_internal(filename): text = data["text"] # encode tokens = self.tokenizer.encode( text, add_special_tokens=False, truncation=False, max_length=10**6, ) # Random choice self.max_length if len(tokens) > self.max_length: start = random.randint(0, len(tokens) - self.max_length) tokens = tokens[start : start + self.max_length - 1] tokens = ( [self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] ) # Pad dims placeholder_multi_codebook = torch.zeros((4, len(tokens)), dtype=torch.long) tokens = torch.concat( [ torch.tensor([tokens], dtype=torch.long), placeholder_multi_codebook, ], dim=0, ) labels = tokens.clone() tokens = tokens[:, :-1] labels = labels[:, 1:] labels[1:] = -100 # remove all placeholders yield {"tokens": tokens, "labels": labels} def parse_data_internal(self, filename: str): url = f"https://huggingface.co/datasets/{self.repo}/resolve/main/{filename}" with xopen(url, mode="rb") as stream: parquet_file = pq.ParquetFile(stream) for batch in parquet_file.iter_batches( batch_size=self.parquet_batch_size, columns=["text"] ): # In-batch shuffling texts = [{"text": text.as_py()} for text in batch["text"]] random.shuffle(texts) yield from texts class AutoAugTextDataset(IterableDataset): """ Auto Augment Dataset by Speaker 1. Random concatenate multiple sentences from the same speaker to form a longer sentence 2. Automatically normalize the text For interactive mode, we use the following format (multiple sequences): [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] For non-interactive mode, we use the following format (one long sequence): [INST] text [/INST] ... """ def __init__( self, proto_files: list[str], seed: int = 42, interactive_prob: float = 0.5, max_length: int = 1024, tokenizer: AutoTokenizer = None, use_speaker: bool = True, causual: bool = True, use_negative_samples: bool = False, num_codebooks: Optional[int] = None, ): """ Args: proto_files: proto buf files if using local data seed: random seed interactive_prob: probability to use interactive mode max_length: max length of the text tokenizer: tokenizer use_speaker: include speaker information in the prompt causual: use causual sampling when using local data, disable will lead to random sampling use_negative_samples: generate negative samples num_codebooks: number of codebooks, if None, it will be automatically detected """ super().__init__() assert 0 <= interactive_prob <= 1, "interactive_prob must be in [0, 1]" self.seed = seed self.max_length = max_length self.tokenizer = tokenizer self.interactive_prob = interactive_prob self.use_speaker = use_speaker self.proto_files = proto_files self.causual = causual self.use_negative_samples = use_negative_samples self.num_codebooks = num_codebooks self.semantic_token_id = self.tokenizer.convert_tokens_to_ids("<|semantic|>") self.groups = None def init_mock_data_server(self): if self.groups is not None: return # Expand the proto files expanded_proto_files = [] for filename in self.proto_files: for i in braceexpand(filename): i = Path(i) if i.is_file(): expanded_proto_files.append(i) elif i.is_dir(): expanded_proto_files.extend(i.rglob("*.proto")) expanded_proto_files.extend(i.rglob("*.protos")) else: raise ValueError(f"{i} is not a file or directory") expanded_proto_files = sorted(expanded_proto_files) Random(self.seed).shuffle(expanded_proto_files) self.groups = [] shard_proto_files = split_by_rank_worker(expanded_proto_files) log.info( f"Reading {len(shard_proto_files)} / {len(expanded_proto_files)} files" ) count = 0 for filename in shard_proto_files: with open(filename, "rb") as f: for text_data in read_pb_stream(f): self.groups.append(text_data) count += 1 log.info(f"Read total {count} groups of data") # Shuffle the lines Random(self.seed).shuffle(self.groups) self.group_weights = [len(i.sentences) for i in self.groups] def __iter__(self): while True: yield self.augment() def tokenize_sentence(self, sentence: str): sentence = clean_text(sentence) tokens = self.tokenizer.encode( f"{sentence}", max_length=10**6, add_special_tokens=False, truncation=False, ) return sentence, len(tokens) def sample_data(self): if self.groups is None: self.init_mock_data_server() # Shuffle unique lines, estimate that each sample is at least 20 tokens num_samples = self.max_length // 20 # choice group based on their number of samples group = random.choices(self.groups, weights=self.group_weights, k=1)[0] if self.causual: # Sample in order if num_samples >= len(group.sentences): samples = group.sentences else: begin = random.randint(0, len(group.sentences) - num_samples) samples = group.sentences[begin : begin + num_samples] else: samples = random.choices( group.sentences, k=min(num_samples, len(group.sentences)) ) return SampledData( source=group.source, name=group.name, samples=samples, ) def augment(self): # Random sample based on speaker using a truncated normal distribution a = torch.tensor([0], dtype=torch.float32) torch.nn.init.trunc_normal_( a, mean=self.max_length // 2, std=self.max_length // 4, a=10, b=self.max_length, ) remaining_tokens = a.long().item() - 4 final_text, final_semantic = [], [] response = self.sample_data() if len(response.samples) == 0: # Invalid group return None samples = list(response.samples) idx = 0 use_interactive = random.random() < self.interactive_prob all_tokens, all_labels = [], [] while remaining_tokens > 0 and len(samples) > 0: sentence = samples.pop(0) text = random.choice(sentence.texts) text, length = self.tokenize_sentence(text) remaining_tokens -= length + len(sentence.semantics[0].values) if use_interactive is False: final_text.append(text) final_semantic.append(sentence.semantics) else: # For interactive mode, we only apply speaker for the first sentence # [INST] [SPK: speaker] text [/INST] ... [INST] text [/INST] tokens, labels = self.pack_sentences( sentences=[text], semantics=[sentence.semantics], speaker=response.name if (self.use_speaker and idx == 0) else None, add_bos=idx == 0, ) all_tokens.append(tokens) all_labels.append(labels) idx += 1 if use_interactive is False: tokens, labels = self.pack_sentences( final_text, semantics=final_semantic, speaker=response.name if self.use_speaker else None, add_bos=True, ) all_tokens.append(tokens) all_labels.append(labels) tokens = torch.cat(all_tokens, dim=1) labels = torch.cat(all_labels, dim=1) # Verify that the length is correct assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}" # Verify bos token assert tokens[0, 0] == self.tokenizer.bos_token_id data = {"tokens": tokens, "labels": labels} if self.use_negative_samples: negative_samples = self.generate_negative_samples(all_tokens, all_labels) data.update(negative_samples) return data def generate_negative_samples(self, all_tokens, all_labels): new_tokens, new_labels = [], [] for tokens, labels in zip(all_tokens, all_labels): # If all codebooks are not -100, we find where it starts start = torch.where(labels[1:].sum(0) != -100 * (labels.size(0) - 1))[0][0] assert (labels[1:, start:] != -100).all() # This shouldn't happen mode = random.choice(["repeat", "lost", "noise"]) begin = random.randint(start, labels.size(1) - 1) end = random.randint(begin, labels.size(1) - 1) if mode == "repeat": tokens = torch.cat( [ tokens[:, :begin], tokens[:, begin:end], tokens[:, begin:end], tokens[:, end:], ], dim=1, ) labels = torch.cat( [ labels[:, :begin], labels[:, begin:end], labels[:, begin:end], labels[:, end:], ], dim=1, ) elif mode == "lost": tokens = torch.cat([tokens[:, :begin], tokens[:, end:]], dim=1) labels = torch.cat([labels[:, :begin], labels[:, end:]], dim=1) elif mode == "noise": middle_tokens, middle_labels = ( tokens[:, begin:end], labels[:, begin:end], ) random_order0 = torch.randperm(middle_tokens.size(1)) random_order1 = torch.randperm(middle_tokens.size(1)) middle_tokens = middle_tokens[:, random_order0] middle_labels = middle_labels[:, random_order1] tokens = torch.cat( [tokens[:, :begin], middle_tokens, tokens[:, end:]], dim=1 ) labels = torch.cat( [labels[:, :begin], middle_labels, labels[:, end:]], dim=1 ) new_tokens.append(tokens) new_labels.append(labels) tokens = torch.cat(new_tokens, dim=1) labels = torch.cat(new_labels, dim=1) # Verify that the length is correct assert tokens.size(1) == labels.size(1), f"{tokens.size(1)} != {labels.size(1)}" return {"negative_tokens": tokens, "negative_labels": labels} def pack_sentences( self, sentences: list[str], semantics=list, speaker: Optional[str] = None, add_bos: bool = True, ): if speaker is not None: sentences = [f"[SPK: {speaker}]"] + sentences final_text = "<|im_start|>user<|im_sep|>" + " ".join(sentences) + "<|im_end|>" final_text = final_text + "<|im_start|>assistant<|im_sep|>" encoded = self.tokenizer.encode( final_text, add_special_tokens=False, truncation=False, max_length=10**6, ) semantic_length = sum([len(i[0].values) for i in semantics]) prompt_length = len(encoded) num_codebooks = ( len(semantics[0]) if self.num_codebooks is None else self.num_codebooks ) bos_bias = 1 if add_bos else 0 # Pack the tokens and semantics (add and to semantic tokens) tokens = ( encoded + [self.semantic_token_id] * semantic_length + self.tokenizer.convert_tokens_to_ids( ["<|im_end|>", "<|end_of_sequence|>"] ) ) if add_bos: tokens = [self.tokenizer.bos_token_id] + tokens # Codebook bos/padding: 0, eos: 1 codes = [ [CODEBOOK_PAD_TOKEN_ID] * (prompt_length + bos_bias) for _ in range(num_codebooks) ] for segment in semantics: for book_idx, book in zip(range(num_codebooks), segment): for j in book.values: codes[book_idx].append(int(j) + 2) for book in codes: book.extend([CODEBOOK_EOS_TOKEN_ID] * 2) tokens = [tokens] + codes tokens = torch.tensor(tokens, dtype=torch.long) labels = tokens.clone() # Mask out the tokens for semantic, predict semantic tokens only # Since we don't mask out the input tokens, the language modeling still works labels[1:, : (prompt_length + bos_bias)] = -100 tokens = tokens[:, :-1] labels = labels[:, 1:] # Verify the padding is correct, and the last token is eos assert add_bos is False or tokens[0, 0] == self.tokenizer.bos_token_id assert (tokens[1:, : prompt_length + bos_bias] == CODEBOOK_PAD_TOKEN_ID).all() assert labels[0, -1] == self.tokenizer.eos_token_id assert (labels[1:, -2:] == CODEBOOK_EOS_TOKEN_ID).all() return tokens, labels @dataclass class TextDataCollator: tokenizer: AutoTokenizer max_length: int = 1024 def __call__(self, examples): if "negative_tokens" in examples: positive_examples = [] negative_examples = [] for i in examples: positive_examples.append( { "tokens": i["tokens"], "labels": i["labels"], } ) negative_examples.append( { "tokens": i["negative_tokens"], "labels": i["negative_labels"], } ) examples = positive_examples + negative_examples return self.batchify(examples) def batchify(self, examples, tokens_key="tokens", labels_key="labels"): tokens, attention_masks, labels = [], [], [] # Calculate the max length max_tokens_length = 0 for example in examples: max_tokens_length = max(max_tokens_length, example[tokens_key].size(1)) max_tokens_length = min(max_tokens_length, self.max_length) for example in examples: _tokens = example[tokens_key][:, :max_tokens_length] _labels = example[labels_key][:, :max_tokens_length] _attention_mask = torch.ones((max_tokens_length,), dtype=torch.bool) tokens_length = _tokens.size(1) _attention_mask[:tokens_length] = False assert tokens_length == _labels.size( 1 ), f"{tokens_length} != {_labels.size(1)}" if tokens_length < max_tokens_length: _tokens = F.pad( _tokens, (0, max_tokens_length - tokens_length), value=self.tokenizer.eos_token_id, ) _tokens[1:, tokens_length:] = CODEBOOK_PAD_TOKEN_ID _labels = F.pad( _labels, (0, max_tokens_length - _labels.size(1)), value=-100 ) tokens.append(_tokens) attention_masks.append(_attention_mask) labels.append(_labels) tokens = torch.stack(tokens, dim=0) attention_masks = torch.stack(attention_masks, dim=0) labels = torch.stack(labels, dim=0) return { "inputs": tokens, "attention_masks": attention_masks, "labels": labels, } class InterleaveDataset(IterableDataset): def __init__( self, datasets: list[IterableDataset], probabilities: list[float], seed: int = 42, ): super().__init__() self.datasets = datasets self.probabilities = probabilities self.seed = seed def __iter__(self): rng = np.random.default_rng(self.seed) dataset_iterators = [iter(dataset) for dataset in self.datasets] while True: # Random choice one dataset_idx = rng.choice(len(self.datasets), p=self.probabilities) dataset_iterator = dataset_iterators[dataset_idx] try: yield next(dataset_iterator) except StopIteration: # Exhausted, create a new iterator dataset_iterators[dataset_idx] = iter(self.datasets[dataset_idx]) yield next(dataset_iterators[dataset_idx]) class TextDataModule(LightningDataModule): def __init__( self, train_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset], val_dataset: Union[StreamTextDataset, AutoAugTextDataset, InterleaveDataset], batch_size: int = 32, tokenizer: AutoTokenizer = None, max_length: int = 1024, num_workers: int = 4, ): super().__init__() self.train_dataset = train_dataset self.val_dataset = val_dataset self.batch_size = batch_size self.tokenizer = tokenizer self.max_length = max_length self.num_workers = num_workers def train_dataloader(self): return DataLoader( self.train_dataset, batch_size=self.batch_size, collate_fn=TextDataCollator(self.tokenizer, self.max_length), num_workers=self.num_workers, ) def val_dataloader(self): return DataLoader( self.val_dataset, batch_size=self.batch_size, collate_fn=TextDataCollator(self.tokenizer, self.max_length), num_workers=self.num_workers, ) if __name__ == "__main__": from tqdm import tqdm ds = AutoAugTextDataset( ["data/protos"], tokenizer=AutoTokenizer.from_pretrained("fishaudio/fish-speech-1"), use_speaker=False, interactive_prob=1.0, use_negative_samples=False, ) for i in ds: print(ds.tokenizer.decode(i["tokens"][0], skip_special_tokens=False)) # i["labels"][0][i["labels"][0] == -100] = 0 # print(ds.tokenizer.decode(i["labels"][0], skip_special_tokens=False)) break