Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,69 +12,84 @@ import torch
|
|
| 12 |
import numpy as np
|
| 13 |
import cv2
|
| 14 |
|
| 15 |
-
|
| 16 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 17 |
-
"diffusers/controlnet-canny-sdxl-1.0",
|
| 18 |
-
torch_dtype=torch.float16
|
| 19 |
-
)
|
| 20 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 21 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 22 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 23 |
-
controlnet=controlnet,
|
| 24 |
-
#vae=vae,
|
| 25 |
-
torch_dtype=torch.float16,
|
| 26 |
-
variant="fp16",
|
| 27 |
-
use_safetensors=True
|
| 28 |
-
)
|
| 29 |
-
pipe.to("cuda")
|
| 30 |
|
| 31 |
generator = torch.Generator(device="cuda")
|
| 32 |
|
| 33 |
#pipe.enable_model_cpu_offload()
|
| 34 |
|
| 35 |
-
def infer(model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed):
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
prompt = prompt
|
| 42 |
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
image=
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
).images
|
| 68 |
|
| 69 |
-
images[0].save(f"
|
| 70 |
|
| 71 |
-
return f"
|
| 72 |
|
| 73 |
with gr.Blocks() as demo:
|
| 74 |
with gr.Column():
|
|
|
|
| 75 |
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
|
| 76 |
image_in = gr.Image(source="upload", type="filepath")
|
| 77 |
-
prompt = gr.Textbox(label="Prompt")
|
|
|
|
| 78 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
|
| 79 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
| 80 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
|
@@ -84,7 +99,7 @@ with gr.Blocks() as demo:
|
|
| 84 |
|
| 85 |
submit_btn.click(
|
| 86 |
fn = infer,
|
| 87 |
-
inputs = [model_name, image_in, prompt, controlnet_conditioning_scale, guidance_scale, seed],
|
| 88 |
outputs = [result]
|
| 89 |
)
|
| 90 |
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
import cv2
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
generator = torch.Generator(device="cuda")
|
| 18 |
|
| 19 |
#pipe.enable_model_cpu_offload()
|
| 20 |
|
| 21 |
+
def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
|
| 22 |
+
if use_custom_model:
|
| 23 |
+
custom_model = model_name
|
| 24 |
|
| 25 |
+
# This is where you load your trained weights
|
| 26 |
+
pipe.load_lora_weights(custom_model, weight_name="pytorch_lora_weights.safetensors", use_auth_token=True)
|
| 27 |
|
| 28 |
prompt = prompt
|
| 29 |
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
| 30 |
|
| 31 |
+
if preprocessor == "canny":
|
| 32 |
+
|
| 33 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 34 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
| 35 |
+
torch_dtype=torch.float16
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 39 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 40 |
+
controlnet=controlnet,
|
| 41 |
+
#vae=vae,
|
| 42 |
+
torch_dtype=torch.float16,
|
| 43 |
+
variant="fp16",
|
| 44 |
+
use_safetensors=True
|
| 45 |
+
)
|
| 46 |
+
pipe.to("cuda")
|
| 47 |
+
|
| 48 |
+
image = load_image(image_in)
|
| 49 |
+
|
| 50 |
+
image = np.array(image)
|
| 51 |
+
image = cv2.Canny(image, 100, 200)
|
| 52 |
+
image = image[:, :, None]
|
| 53 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 54 |
+
image = Image.fromarray(image)
|
| 55 |
+
|
| 56 |
+
if use_custom_model:
|
| 57 |
+
lora_scale= 0.9
|
| 58 |
+
|
| 59 |
+
images = pipe(
|
| 60 |
+
prompt,
|
| 61 |
+
negative_prompt=negative_prompt,
|
| 62 |
+
image=image,
|
| 63 |
+
preprocessor=preprocessor,
|
| 64 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 65 |
+
guidance_scale = guidance_scale,
|
| 66 |
+
num_inference_steps=50,
|
| 67 |
+
generator=generator.manual_seed(seed),
|
| 68 |
+
cross_attention_kwargs={"scale": lora_scale}
|
| 69 |
+
).images
|
| 70 |
+
else:
|
| 71 |
+
images = pipe(
|
| 72 |
+
prompt,
|
| 73 |
+
negative_prompt=negative_prompt,
|
| 74 |
+
image=image,
|
| 75 |
+
preprocessor=preprocessor,
|
| 76 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 77 |
+
guidance_scale = guidance_scale,
|
| 78 |
+
num_inference_steps=50,
|
| 79 |
+
generator=generator.manual_seed(seed),
|
| 80 |
).images
|
| 81 |
|
| 82 |
+
images[0].save(f"result.png")
|
| 83 |
|
| 84 |
+
return f"result.png"
|
| 85 |
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
with gr.Column():
|
| 88 |
+
use_custom_model = gr.Checkbox(label="Use a custom model ?", value=False)
|
| 89 |
model_name = gr.Textbox(label="Model to use", placeholder="username/my_model")
|
| 90 |
image_in = gr.Image(source="upload", type="filepath")
|
| 91 |
+
prompt = gr.Textbox(label="Prompt"),
|
| 92 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny")
|
| 93 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5, type="float")
|
| 94 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
| 95 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
|
|
|
| 99 |
|
| 100 |
submit_btn.click(
|
| 101 |
fn = infer,
|
| 102 |
+
inputs = [use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
|
| 103 |
outputs = [result]
|
| 104 |
)
|
| 105 |
|