Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,7 +31,7 @@ generator = torch.Generator(device="cuda")
|
|
| 31 |
|
| 32 |
#pipe.enable_model_cpu_offload()
|
| 33 |
|
| 34 |
-
def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
|
| 35 |
if use_custom_model:
|
| 36 |
custom_model = model_name
|
| 37 |
|
|
@@ -39,7 +39,7 @@ def infer(use_custom_model, model_name, image_in, prompt, preprocessor, controln
|
|
| 39 |
pipe.load_lora_weights(custom_model, use_auth_token=True)
|
| 40 |
|
| 41 |
prompt = prompt
|
| 42 |
-
negative_prompt =
|
| 43 |
|
| 44 |
if preprocessor == "canny":
|
| 45 |
|
|
@@ -99,9 +99,10 @@ Use StableDiffusion XL with ControlNet pretrained LoRas
|
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
prompt = gr.Textbox(label="Prompt")
|
|
|
|
| 102 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
| 103 |
with gr.Column():
|
| 104 |
-
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False)
|
| 105 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
| 106 |
|
| 107 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
|
@@ -111,7 +112,7 @@ Use StableDiffusion XL with ControlNet pretrained LoRas
|
|
| 111 |
|
| 112 |
submit_btn.click(
|
| 113 |
fn = infer,
|
| 114 |
-
inputs = [use_custom_model, model_name, image_in, prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
|
| 115 |
outputs = [result]
|
| 116 |
)
|
| 117 |
|
|
|
|
| 31 |
|
| 32 |
#pipe.enable_model_cpu_offload()
|
| 33 |
|
| 34 |
+
def infer(use_custom_model, model_name, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed):
|
| 35 |
if use_custom_model:
|
| 36 |
custom_model = model_name
|
| 37 |
|
|
|
|
| 39 |
pipe.load_lora_weights(custom_model, use_auth_token=True)
|
| 40 |
|
| 41 |
prompt = prompt
|
| 42 |
+
negative_prompt = negative_prompt
|
| 43 |
|
| 44 |
if preprocessor == "canny":
|
| 45 |
|
|
|
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
prompt = gr.Textbox(label="Prompt")
|
| 102 |
+
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured")
|
| 103 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5)
|
| 104 |
with gr.Column():
|
| 105 |
+
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available")
|
| 106 |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5, type="float")
|
| 107 |
|
| 108 |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42)
|
|
|
|
| 112 |
|
| 113 |
submit_btn.click(
|
| 114 |
fn = infer,
|
| 115 |
+
inputs = [use_custom_model, model_name, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, seed],
|
| 116 |
outputs = [result]
|
| 117 |
)
|
| 118 |
|