Spaces:
Sleeping
Sleeping
| import gradio | |
| from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
| from diffusers.utils import load_image | |
| from PIL import Image | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| import os | |
| controlnet = ControlNetModel.from_pretrained( | |
| "diffusers/controlnet-canny-sdxl-1.0", | |
| torch_dtype=torch.float16 | |
| ) | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", | |
| controlnet=controlnet, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| def infer(image_in): | |
| prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" | |
| negative_prompt = 'low quality, bad quality, sketches' | |
| image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") | |
| controlnet_conditioning_scale = 0.5 # recommended for good generalization | |
| image = np.array(image) | |
| image = cv2.Canny(image, 100, 200) | |
| image = image[:, :, None] | |
| image = np.concatenate([image, image, image], axis=2) | |
| image = Image.fromarray(image) | |
| images = pipe( | |
| prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| ).images | |
| images[0].save(f"hug_lab.png") | |
| with gr.Blocks() as demo: | |
| with gr.Column(): | |
| image_in = gr.Image(source="upload", type="filepath") | |
| prompt = gr.Textbox(label="Prompt") | |
| submit_btn = gr.Button("Submit") | |
| result = gr.Image(label="Result") | |
| submit_btn.click( | |
| fn = infer, | |
| inputs = [image_in, prompt], | |
| outputs = [result] | |
| ) | |
| demo.queue().launch() | |