File size: 5,687 Bytes
7fb6157
 
391222d
7fb6157
 
 
 
 
e7d2d44
c09190f
 
 
 
 
391222d
80449f7
391222d
c09190f
 
391222d
1c0a21f
3d381f7
ade087a
7fb6157
1b28bbd
7fb6157
391222d
7fb6157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c09190f
 
 
 
 
 
 
 
 
 
 
 
 
7fb6157
391222d
ade087a
e5b0363
ade087a
c09190f
 
 
 
 
 
 
 
 
 
 
 
790ff50
c09190f
 
790ff50
c09190f
 
 
 
 
 
 
 
 
 
 
ade087a
 
 
7fb6157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade087a
369ed77
e5b0363
 
 
 
 
369ed77
e5b0363
 
 
 
 
 
369ed77
7fb6157
 
391222d
54b4948
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import time
import base64
import gradio as gr
from sentence_transformers import SentenceTransformer

import httpx
import json

import os
import requests
import urllib

from os import path
from pydub import AudioSegment

img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator")

from share_btn import community_icon_html, loading_icon_html, share_js

def get_prompts(uploaded_image):
  
  prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0]
  
  music_result = generate_track_by_prompt(prompt, duration, gen_intensity, audio_format)
  
  return music_result[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)

from utils import get_tags_for_prompts, get_mubert_tags_embeddings, get_pat

minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm)


def get_track_by_tags(tags, pat, duration, gen_intensity, maxit=20, loop=False):
    if loop:
        mode = "loop"
    else:
        mode = "track"
    r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
                   json={
                       "method": "RecordTrackTTM",
                       "params": {
                           "pat": pat,
                           "duration": duration,
                           "format": "wav",
                           "intensity":gen_intensity,
                           "tags": tags,
                           "mode": mode
                       }
                   })

    rdata = json.loads(r.text)
    assert rdata['status'] == 1, rdata['error']['text']
    trackurl = rdata['data']['tasks'][0]['download_link']

    print('Generating track ', end='')
    for i in range(maxit):
        r = httpx.get(trackurl)
        if r.status_code == 200:
            return trackurl
        time.sleep(1)


def generate_track_by_prompt(prompt, duration, gen_intensity):
    try:
        pat = get_pat("[email protected]")
        _, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0]
        result = get_track_by_tags(tags, pat, int(duration), gen_intensity, loop=False)
        print(result)
        return result, ",".join(tags), "Success"
    except Exception as e:
        return None, "", str(e)

def convert_mp3_to_wav(mp3_filepath):
 
  url = mp3_filepath
  save_as = "file.mp3"
  
  data = urllib.request.urlopen(url)

  f = open(save_as,'wb')
  f.write(data.read())
  f.close()
  
  wave_file="file.wav"
  
  sound = AudioSegment.from_mp3(save_as)
  sound.export(wave_file, format="wav")
  
  return wave_file

css = """
#col-container {max-width: 550px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
    animation: spin 1s linear infinite;
}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {
    display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
    all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
    all: unset;
}
#share-btn-container div:nth-child(-n+2){
    width: auto !important;
    min-height: 0px !important;
}
#share-btn-container .wrap {
    display: none !important;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
                <div
                style="
                    display: inline-flex;
                    align-items: center;
                    gap: 0.8rem;
                    font-size: 1.75rem;
                "
                >
                <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
                    Image to Music
                </h1>
                </div>
                <p style="margin-bottom: 10px; font-size: 94%">
                Sends an image in to <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a>
                to generate a text prompt which is then run through 
                <a href="https://huggingface.co/Mubert" target="_blank">Mubert</a> text-to-music to generate music from the input image!
                </p>
            </div>""")
    
    
        input_img = gr.Image(type="filepath", elem_id="input-img")
        with gr.Row():
            track_duration = gr.Slider(minimum=20, maximum=120, value=30, step=5, label="Track duration", elem_id="duration-inp")
            gen_intensity = gr.Dropdown(choices=["low", "medium", "high"], value="high", label="Complexity", show_label=False)
        generate = gr.Button("Generate Music from Image")
    
        music_output = gr.Audio(label="Result", type="filepath", elem_id="music-output")
        
        with gr.Group(elem_id="share-btn-container"):
            community_icon = gr.HTML(community_icon_html, visible=False)
            loading_icon = gr.HTML(loading_icon_html, visible=False)
            share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
      
    generate.click(get_prompts, inputs=[input_img,track_duration,gen_intensity], outputs=[music_output, share_button, community_icon, loading_icon], api_name="i2m")
    share_button.click(None, [], [], _js=share_js)

demo.queue(max_size=32, concurrency_count=20).launch()