Spaces:
Paused
Paused
File size: 5,337 Bytes
7fb6157 391222d 7fb6157 e7d2d44 c09190f 391222d 7c7eec0 391222d c09190f 1bd1938 36960e6 7c7eec0 5185154 36960e6 1bd1938 36960e6 7fb6157 391222d 7fb6157 1bd1938 7fb6157 1bd1938 7fb6157 1bd1938 7fb6157 1bd1938 7fb6157 c09190f 7fb6157 391222d 0ac1d72 c5bd206 0ac1d72 03e0e2d 7fb6157 c819c3d 7fb6157 ade087a e5b0363 2500455 e5b0363 faf112e c819c3d e0dcf65 0ac1d72 c819c3d 1bd1938 7fb6157 391222d 54b4948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import time
import base64
import gradio as gr
from sentence_transformers import SentenceTransformer
import httpx
import json
import os
import requests
import urllib
from os import path
from pydub import AudioSegment
#img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator")
img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2")
from share_btn import community_icon_html, loading_icon_html, share_js
def get_prompts(uploaded_image, track_duration, gen_intensity, gen_mode):
print("calling clip interrogator")
#prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0]
prompt = img_to_text(uploaded_image, 'fast', 4, fn_index=1)[0]
print(prompt)
music_result = generate_track_by_prompt(prompt, track_duration, gen_intensity, gen_mode)
print(music_result)
return music_result[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
from utils import get_tags_for_prompts, get_mubert_tags_embeddings, get_pat
minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm)
def get_track_by_tags(tags, pat, duration, gen_intensity, gen_mode, maxit=20):
r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
json={
"method": "RecordTrackTTM",
"params": {
"pat": pat,
"duration": duration,
"format": "wav",
"intensity":gen_intensity,
"tags": tags,
"mode": gen_mode
}
})
rdata = json.loads(r.text)
assert rdata['status'] == 1, rdata['error']['text']
trackurl = rdata['data']['tasks'][0]['download_link']
print('Generating track ', end='')
for i in range(maxit):
r = httpx.get(trackurl)
if r.status_code == 200:
return trackurl
time.sleep(1)
def generate_track_by_prompt(prompt, duration, gen_intensity, gen_mode):
try:
pat = get_pat("[email protected]")
_, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, [prompt, ])[0]
result = get_track_by_tags(tags, pat, int(duration), gen_intensity, gen_mode)
print(result)
return result, ",".join(tags), "Success"
except Exception as e:
return None, "", str(e)
def convert_mp3_to_wav(mp3_filepath):
url = mp3_filepath
save_as = "file.mp3"
data = urllib.request.urlopen(url)
f = open(save_as,'wb')
f.write(data.read())
f.close()
wave_file="file.wav"
sound = AudioSegment.from_mp3(save_as)
sound.export(wave_file, format="wav")
return wave_file
article = """
<div class="footer">
<p>
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates ๐ค
</p>
</div>
"""
with gr.Blocks(css="style.css") as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Image to Music
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Sends an image in to <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a>
to generate a text prompt which is then run through
<a href="https://huggingface.co/Mubert" target="_blank">Mubert</a> text-to-music to generate music from the input image!
</p>
</div>""")
input_img = gr.Image(type="filepath", elem_id="input-img")
music_output = gr.Audio(label="Result", type="filepath", elem_id="music-output").style(height="5rem")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
with gr.Accordion(label="Music Generation Options", open=False)
track_duration = gr.Slider(minimum=20, maximum=120, value=30, step=5, label="Track duration", elem_id="duration-inp")
with gr.Row():
gen_intensity = gr.Dropdown(choices=["low", "medium", "high"], value="medium", label="Intensity")
gen_mode = gr.Radio(label="mode", choices=["track", "loop"], value="track")
generate = gr.Button("Generate Music from Image")
gr.HTML(article)
generate.click(get_prompts, inputs=[input_img,track_duration,gen_intensity,gen_mode], outputs=[music_output, share_button, community_icon, loading_icon], api_name="i2m")
share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=32, concurrency_count=20).launch() |