Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import torch, os
|
|
|
3 |
import numpy as np
|
|
|
4 |
from PIL import Image
|
5 |
import matplotlib.pyplot as plt
|
6 |
from huggingface_hub import snapshot_download
|
@@ -14,6 +16,18 @@ from converter import load_wav, mel_spectrogram, normalize_spectrogram, denormal
|
|
14 |
from utils import pad_spec, image_add_color, torch_to_pil, normalize, denormalize, prepare_mask_and_masked_image
|
15 |
|
16 |
# ——
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def save_spectrogram_image(spectrogram, filename):
|
19 |
"""Save a spectrogram as an image."""
|
@@ -34,6 +48,8 @@ def infer(prompt, progress=gr.Progress(track_tqdm=True)):
|
|
34 |
|
35 |
def infer_img2img(prompt, audio_path, desired_strength, progress=gr.Progress(track_tqdm=True)):
|
36 |
|
|
|
|
|
37 |
pretrained_model_name_or_path = "auffusion/auffusion-full-no-adapter"
|
38 |
dtype = torch.float16
|
39 |
device = "cuda"
|
@@ -129,6 +145,8 @@ def infer_img2img(prompt, audio_path, desired_strength, progress=gr.Progress(tra
|
|
129 |
|
130 |
def infer_inp(prompt, audio_path, mask_start_point, mask_end_point, progress=gr.Progress(track_tqdm=True)):
|
131 |
|
|
|
|
|
132 |
pretrained_model_name_or_path = "auffusion/auffusion-full-no-adapter"
|
133 |
dtype = torch.float16
|
134 |
device = "cuda"
|
|
|
1 |
import gradio as gr
|
2 |
import torch, os
|
3 |
+
import wave
|
4 |
import numpy as np
|
5 |
+
from scipy.io.wavfile import write
|
6 |
from PIL import Image
|
7 |
import matplotlib.pyplot as plt
|
8 |
from huggingface_hub import snapshot_download
|
|
|
16 |
from utils import pad_spec, image_add_color, torch_to_pil, normalize, denormalize, prepare_mask_and_masked_image
|
17 |
|
18 |
# ——
|
19 |
+
def convert_wav_to_16khz(input_path, output_path):
|
20 |
+
with wave.open(input_path, "rb") as wav_in:
|
21 |
+
params = wav_in.getparams()
|
22 |
+
channels, sampwidth, framerate, nframes = params[:4]
|
23 |
+
|
24 |
+
# Read and convert audio data
|
25 |
+
audio_data = np.frombuffer(wav_in.readframes(nframes), dtype=np.int16)
|
26 |
+
new_framerate = 16000
|
27 |
+
|
28 |
+
# Save as a new WAV file
|
29 |
+
write(output_path, new_framerate, audio_data)
|
30 |
+
return output_path
|
31 |
|
32 |
def save_spectrogram_image(spectrogram, filename):
|
33 |
"""Save a spectrogram as an image."""
|
|
|
48 |
|
49 |
def infer_img2img(prompt, audio_path, desired_strength, progress=gr.Progress(track_tqdm=True)):
|
50 |
|
51 |
+
audio_path = convert_wav_to_16khz(audio_path, "output_16khz.wav")
|
52 |
+
|
53 |
pretrained_model_name_or_path = "auffusion/auffusion-full-no-adapter"
|
54 |
dtype = torch.float16
|
55 |
device = "cuda"
|
|
|
145 |
|
146 |
def infer_inp(prompt, audio_path, mask_start_point, mask_end_point, progress=gr.Progress(track_tqdm=True)):
|
147 |
|
148 |
+
audio_path = convert_wav_to_16khz(audio_path, "output_16khz.wav")
|
149 |
+
|
150 |
pretrained_model_name_or_path = "auffusion/auffusion-full-no-adapter"
|
151 |
dtype = torch.float16
|
152 |
device = "cuda"
|